• Title/Summary/Keyword: Enzyme kinetics

Search Result 224, Processing Time 0.045 seconds

Molecular Computing with Artificial Neurons

  • Michael Conrad;Zauner, Klaus-Peter
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.18 no.8
    • /
    • pp.78-89
    • /
    • 2000
  • Today's computers are built up from a minimal set of standard pattern recognition operations. Logic gates, such as NAND, are common examples. Biomolecular materials offer an alternative approach, both in terms of variety and context sensitivity. Enzymes, the basic switching elements in biological cells, are notable for their ability to discriminate specific molecules in a complex background and to do so in a manner that is sensitive to particular milieu features and indifferent to others, The enzyme, in effect, is a powerful context sensitivity pattern processor that in a rough way can be analogized to a neuron whose input-output behavior is controlled by enzymatic dynamics.

  • PDF

Purification and Characterization of High-Molecular-Weight $\beta$-Glucosidase from Trichoderma koningii (Trichoderma koningii가 생성하는 고분자량 $\beta$-glucosidase의 정제 및 특성)

  • 맹필재;정춘수;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.251-262
    • /
    • 1986
  • High-molecular-weight ${\beta}-glucosidase$ (EC 3.2.1.21) was purified from the culture filtrate of Trichoderma koningii through a four-step procedure including chromatography on Bio-Gel P-150, DEAE-Sephadex A-50 and SP-Sephadex C-50; and chromatofocusing on Polybuffer exchanger PBE 94. The molecular weight of the enzyme was determined to be about 101,000 by SDS-polyacrylamide gel electrophoreses, and the isoelectric point was estimated to be 4.96 by analytical isoelectric focusing. The temperature optimum for activity was about $55^{\circ}C$, and the pH optimumwas 3.5. The enzyme was considerably thermostable, for no loss of activity was observed when the enzyme was preincubated at $60^{\circ}C$ for 5h. Km values for cellobiose, gentiobiose, sophorose, salicin and $p-nitrophenyl-{\betha}-D-glucoside$ were 99.2, 14.7, 7.09, 3.15 and 0.70 mM, respectively, which indicates that the enzyme has much higher affinity towards $p-nitrophenyl-{\betha}-D-glucoside$ than towards the other substrates, especially cellobiose. Substrate inhibition by $p-nitrophenyl-{\betha}-D-glucoside$ and salicin was observed at the conecntrations exceeding 5mM. Gluconolactone was a powerful inhibitor against the action of the enzyme on $p-nitrophenyl-{\betha}-D-glucoside\;(K_i\;37.9\;{\mu}M)$, wherease glucose was much less effective ($K_i$ 1.95 mM). Inhibition was of the competitive type in each case. Transglucosylation activity was detected shen the readtion products formed from $p-nitrophenyl-{\betha}-D-glucoside$ by the enzyme were analysed using high-performance liquid chromatography.

  • PDF

Purification and Biological Characteristics of Alkaline Protease from Aspergillus sp. CC-29 (Aspergillus sp. CC-29 생성하는 Alkaline Protease의 정제 및 특성)

  • Choi, Cheong;Kim, Doo-Ki;Cho, Young-Je;Sung, Tae-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.5
    • /
    • pp.434-442
    • /
    • 1990
  • Aspergillus sp. CC-29 ws selected for its strong protease activity among various stains of molds found in soil. It was found that the production of alkaline protease reached to maximum when the wheat bran medium containing glucose as carbon source had been cultured for 4 days. Alkaline proteased was purified 36.10 fold from Aspergillus sp. CC-29 The purification procedures included ammonium sulfate fractunation gel filteration on Sepha-dex G-75 G-150 and DEAE-cellulose ion-exchange chromatography, The yield of the purified enzyme was 22.40% The purified enzyme was confirmed as a single band by the polyacryla-mide. When the purified enzyme was applied to SDS-PAGE the molecular weight was estima-ted 24000. The optimum pH for the enzyme activity was 9.0 and the optimum temperature was 4$0^{\circ}C$ The reaction of this enzyme followed typical Michaelis-Menten kinetics with the Km value of 2.10$\times$10-4M with the Vmax of 29.41 $\mu$g/min. The enzyme was reactively stable in alkalic condition and unstable by heat treatment. The activity of alkaline protease was increased by the addition of Ca2+ whereas it was inhibited by Hg2+ Zn2+ at concentration of 1$\times$10-3M.

  • PDF

Production, Purification and Characterization of $\beta$-Galactosidase from Bifidobaacterium longurn KCTC 3 2 15 (Bifidobacterium longum KCTC 3215에 의한 $\beta$-Galactosidase의 생산. 정제 및 특성)

  • 강국희;민해기;장영효;이호근
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.456-463
    • /
    • 1991
  • $\beta$-Galactosidase of Bifidobacterium longum KCTC 3215 was studied on the production, purification, and characterization. Optimum conditions for the enzyme production were in the medium of 1.0% lactose as carbon source, initial pH 7.0 and in 17 hours of cultivation at $37^{\circ}C$. The enzyme was purified 9.25 folds by protamine sulfate precipitation, ammonium sulfate fractionation, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-150 gel filtration. The maximal P-galactosidase activity was observed at pH 6.5 and at the temperature of $40^{\circ}C$ This enzyme was stable at pH 6.0-8.5. Metal ions such as $Ca^{2+} \;and \; Co^{2+}$, 2-mercaptoethanol, cysteine, and glutathione stimulated B-galactosidase activity. The enzyme activity was inhibited by addition of $Mg^{2+}, Fe^{2+}, Cs^{1+}, Li^{1+}$, DETA, galactose, and $\rho$-chloromercuribenzoic acid. The kinetics of o-nitrophenyl-$\beta$-D-galactopyranoside and lactose were $K_m$ = 1.66 mM, $V_{max}= 0.30 mM/min\cdot mg\cdot protein$ and $KK_m = 3.18 mM, \; V_{max}= 0.42 mM/min \cdot mg\cdot$ protein, respectively. The molecular weight of native enzyme was about 360, 000 dalton and the enzyme consisted of 2 identical subunits with a molecular weight of 180, 000.

  • PDF

Characteristics and Action Pattern of Alkaline Protease produced from Aspergillus fumigatus (Aspergillus fumigatus이 생산하는 Alkaline protease의 특성과 작용양상)

  • Cha, Woen-Suep;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.3
    • /
    • pp.348-355
    • /
    • 1989
  • This experiment was conducted to investigate the characteristics of alkaline protease from Aspergillus fumigatus which was isolated from soil as a superior strain for the production of the alkaline protease. The optimum temperature for enzyme activity was $50^{\circ}C$ and optimum pH was 9.0. The enzyme was stable at pH 8.0 to 10.0 and thermal inactivation was shown $30^{\circ}C$. The activity of the enzyme was increased by the addition of $Mn^{++},\;Cu^{++},\;Ba^{++},\;Mg^{++},\;$wheras it was inhibitied by $K^+,\;Fe^{+++},\;Ag^+,\;Pb^{++},\;Na^+,\;Ca^{++},\;Hg^+,\;Zn^{++}$. EDTA. 2, 4-DNP, ${\varepsilon}-amino$ caproic acid did not show inhibitory effect on the proteolytic activity of alkaline protease but P-chloromercuribenzoic acid inhibited the enzyme activity, indicating that reactive sulfhydryl group is required for the enzymatic activity. The reaction of this enzyme followed typical Michael-Menten Kinetics with the Km value of $8.33{\times}10^{-4}mole/{\ell}$ with the Vmax of $47.62{\mu}g/min$. This enzyme had stronger proteolytic activity than trypsin on substrate such as casin and hemoglibin.

  • PDF

Inhibition Effect of ACE (Angiotensin Converting Enzyme) and Kinetics of Aloe Acethylmannan (알로에 아세칠만난의 ACE (Angiotensin Converting Enzyme) 저해효과 및 동력학적 분석)

  • Ryu, Il-Whan;Shin, Yong-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1269-1274
    • /
    • 1997
  • This study was researched to purify and characterize variety bioactive material acethylmannan from Aloe vera. Purified acethylmannan was mannose (67%), acetyl group (23%) and the rest glucose, galactose that consisting of long chain polydispered ${\beta}-1,4$ linked mannan polymers. The sugar and acetyl group in molecular were linked molar ration one third. $IC_{50}$ value (i.e that concentration which exhibits 50% more enzyme inhibition than control) on angiotensin converting enzyme were 0.58 mM. This compound were found to be a competitive inhibition of Angiotensin Converting Enzyme with apparent Ki values of 0.068 mM.

  • PDF

Mathematical Model for the Production of High-purity Fructo-oligosaccharides by the Mixed-enzyme System of Fructosyltransferase and Glucose Oxidase (Fructosyltransferase와 Glucose oxidase 혼합효소계를 이용한 고순도 Fructo-oligosaccharides 생산에서 반응 메카너즘에 대한 수학적 모델)

  • 윤종원;최윤찬이민규송승구
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.40-47
    • /
    • 1994
  • A simplified mathematical model for the production of high-purity fructo-oligosaccharides by the mixed-enzyme system of fructosyl transferees and glucose oxidase was proposed and compared with the experimental results. The kinetic parameters including $K_m,\;V_{max}\;and\;K_{iG}$ were estimated at $40^{\circ}C$, in which $K_m$, values decreased and $K_{iG}$ and $V_{max}$ values increased compared with those of fructosyl transferees alone. The kinetics of the mixed-enzyme system was successfully described in the form of Michaelis-Menten equations. At the reasonable sucrose concentrations tested, the simulated sugar profiles were of good agreement with the experimental ones.

  • PDF

Surface Immobilizntion on Silica of Endoxylanase Produced from Recombinant Bacillus subtilis

  • Kang, Su-Cheol;Kim, Hye-Jeong;Nam, Soo-Wan;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.766-772
    • /
    • 2002
  • The plasmid, pJHKJ4, containing the endoxylanase gene, was introduced into Bacillus subtilis DB 104. The recombinant cells produced 587 unit/ml of endoxylanase at 33 h. The endoxylanase was immobilized covalently on the surface of silica fur effective xylan hydrolysis. The activities of the immobilized and free endoxylanases were optimal at pH 6.5 and 10 mM $MnSO_4$. The optimal temperature of the immobilized endoxylanase was $60^{\circ}C$, whereas that of the free endoxylanase was $65^{\circ}C$. Under these optimal conditions, the activity of the immobilized endoxylanase was 1.7 times higher than that of the fee endoxylanase. From microscope photographs, the immobilized endoxylanase was found to be bounded and evenly distributed on the surface of silica, a nonporous solid support. The enzyme kinetics between the immobilized and free endoxylanases was estimated to be uncompetitive, when plotting double-reciprocal plots against xylan concentrations and endoxylanase activities. These results suggest that the higher activity of the immobilized endoxylanase may be due to increased formation of enzyme-substrate complex, because of the easy accessibility of the immobilized enzyme to the polysaccharide-xylan as a high molecular weight substrate.

Phytol, SSADH Inhibitory Diterpenoid of Lactuca sativa

  • Bang, Myun-Ho;Choi, Soo-Young;Jang, Tae-O;Kim, Sang-Kook;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Park, Jin-Seu;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.643-646
    • /
    • 2002
  • The succinic semialdehyde dehydrogenase (SSADH) inhibitory component was isolated from the EtOAc fraction of Lactuca sativa through repeated column chromatography; then, it was identified as phytol, a diterpenoid, based on the interpretation of several spectral data. Incubation of SSADH with the phytol results in a time-dependent loss of enzymatic activity, suggesting that enzyme modification is irreversible. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $6.15{\times}10^{-2}mM^{-1}min^{-1}.$ Complete protection from inactivation was afforded by the coenzyme $NAD^{+}$, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme; therefore, it seems likely that phytol covalently binds at or near the active site of the enzyme. It is postulated that the phytol is able to elevate the neurotransmitter GABA levels in central nervous system through its inhibitory action on one of the GABA degradative enzymes, SSADH.

Synthesis of Acetins from Glycerol using Lipase from Wheat Extract

  • Pradima, J;Rajeswari, M Kulkarni;Archna, Narula;Sravanthi, V;Rakshith, R;Nawal, Rabia Nizar
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.501-506
    • /
    • 2019
  • New technology-driven biocatalysts are revolutionizing the biochemical industries. With maximum utilization of renewable feedstock, biocatalysts have been the basis for a major breakthrough. Lipases are the most widely established catalysts used for hydrolysis, esterification and transesterification reactions. In this research, a biochemical process that combines extraction of lipase enzyme from germinated wheat seeds and its application to valorize glycerol to acetins by esterification is presented. Acetins are among highly rated, value-added products derived from glycerol. The favorable conditions for the enzymatic conversion of glycerol were observed as glycerol to acetic acid molar ratio (1:5), reaction temperature ($40^{\circ}C$) and the amount of enzyme (20% v/v). 65.93% of glycerol conversion was achieved for duration of 15 h with the use of tert-butanol solvent. This method proposes to explore the viability of a biological route to convert glycerol derived from biodiesel industry to acetins with further streamlining.