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Molecular Computing with Artificial Neurons

Abstract

Today's computers are built up from a
minimal set of standard pattern recognition
operations. Logic gates, such as NAND, are
common  examples. Blomolecular materials
offer an altermative approach, both in terms
of variety and context sensifivity. Enzymes,
the basic switching elements in biological
cells, are notable for their ahility to
discriminate specific molecules in a complex
background and to do so i a manner that
is sensitive to parlicular milieu features and
indillerent to others. The enzyme. in effect,
is a powerlul context sensitive paltern
recognizer. We describe a tabletop pattern
processor that m a rough wayv can be
analogized 10 a neuron whose input—oufput
behavior is controlled by enzymatic dyna-
mics.

Keywords: artificial neural networks, pat-
tern recognition, biological information pro-
cessing, enzyme kinetics, signal processing

1. Neuronal Pattern Processing

In 1904 a school teacher found that he
was able to successfully teach his horse,
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Clever Hans. elementary mathematics. T he
asked Hans for the sum of two digits, the
horse would tap out the correct result. It
turned out, however, that the horse was nat
doing arithmetic. It used minute involuntary
reactions of ils leacher lo decide when to
stop tapping (O'Grady, Dobhrovolsky and
Aronoff 1997, p. 612). At the time, the
summary judgment was that Hans was not
ab all clever. But just try to program a
computer te perceive and leam how  to
utilize subtle changes in expression. From
the viewpoinl of todayv’s computer
technology adding the digits seems lrivial
campared to the patlern recognition problem
the horse chase to solve.

The eloquence with which biclogical or-
ganisms handle pattern processing tasks can
be traced to molecular patlern recognition
capabilities of macromolecules (Conrad 1992),
Proteins are particularly versatile in  this
respect. Protein catalvsts. or enzyimes, are
capable of discriminating and acting on
gpectiic molecular shapes in a complex
milieu and doing seo in a manner that is
selectively sensitive to the milieu context.

To what extent docs this infrinsic capa-
hility of macromolecules percolate up into
the perception-action capabilities of a Clever
Hans? The question clearly has much to de
with the capabilities of newons. Is the



netron a mere sumrnator of its inputs,
reaciing only te an average field, or is it
itself a powerful molecular computer? Cme
of the great pioneers of neural computing,
Warren McCulloch, made a comment perti-
nent to this point:

"For our purpose of proving that a real
nervous systom could compute any number
that a Turing machine could compute with
a fixed length of tape, it was possible fo
treat the neurcn as a simple threshold
clement. Unfortunately. this misled many
into the trap of suppeosing that threshold
logic was all one could obtain in hardware
or software. This is [alse. A real neuron, or
Crane's neuristor, can certainly compute any
Boalian [sic] [unction of itz inputs—to say
ihe least!” (McCulloch 1965, pp. 385, 394)

To this it is perhaps worlh adding that in
the cerebral cortex of the mouse, for
example, the average number of synapses
(inputs) per neuron is 8000 {Schutiz 1995). It
is awloward even to think of Boolean logic
in the [ace of such high connectivity.

We ean note ancther bit of history,
connected with the perceptron concept of
Rosenblatt (1962). This concept indeed used
an essentially thresheld neuron. Rosenblatt-
found a simple, elfective learning algorithm
for a single layer perceptron. The idea was
severely criticized by Minsky and Paperf
(1869) The single layer percepiron could not
be used to discriminate linearly inseparable
patterns. The exclusive-cr (XOR) operation
is the simplest example. Multilayer percept-
rons can of course do this job, as can
laboratory rats (Grilfith, Davis, and Kause
1968)  PBut  then the definite learning
algorithm used by Rosenblait no longer
applied. Evolutionary methods of learning
could be employed. However, [or various
reasons the computer science cormunity at
the time was nol prepared to accept
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self~organizing  svslems and  evolutionary
methods. Handcrafted approaches were the
order of the day. Neural nels and
evolulionary approaches had to sit on the
sidelines until relatively recently.

There 15 another way out of the XOR
limitation. The neuron, as noted by McCul-
loch, need not be a sunple threshold ele-
ment. We will show here that individual
enzymes can be used to perform the XOR
operation. Neurons and other hiclogical cells
contain thousands of interlinked enzymes.
Our assumption is tihat the opportunity
seeking process of evolution uses fhesc
enzyme npetworks to Implement complex
information processing functions at the
cellular level. We have developed a tabletop
prototype, a crude ariificial neuron ol sorts,
that makes il possible to investigate how
such molecular pattern recognizers could be
utilized in a device context. Conceivably the
paitern recognition virtuosity of natural
ological cells is based on similar cperative

principles.
2. Enzyme Basics

Fnzymes are prolems that act as highly
specific catalysts capable of discriminating
particular substrales in a complex chemical
background The catalytic functicn perform-
ed is controlled by the enzyme’s shape-its
3-1) spatial structure (Friedrich 1984). This
structure is largely determined by amino
acid sequence. The structure is not rigid; it
undergoes considerable conlormational mo-
tion, ie., rotation around atormmc bonds
(Frauenfelder, Park, Young 1988 Yon,
Perahia, and Ghélis 1988). Which subset of
conformationai states is favored is a func-
tHon of an enzyme's physiochemical environ-
ment, Catalytic activity is critically depend-
ent on conformational state and therefore
provides a sensitive and convenient probe
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for conformation change. The intricate con-
[ormational dynamics of the enzyme fuses
signals [rom its physiochemical milienand
modulates catalytic activity. The enzyme is
in effect an implementation of a [unction
that maps numercus selected variables
presented as physiochemical context into
output conununicated as catalvtic activity.
The cell, as noled earlier, contains thous-
ands of enzymes. In single celled organi—
sms, such ag amoeba or paramecium, all the
information processing 15 mediated by the
internal molecular network. Chemical signals
from the environment are communicated
through the cell membrane, either directly or
by triggering the release of internal chemi-
cals through interaction with membrane
receptors (see Fig. 1). The signals influ-
ence the conformational dynamics of specific
enzymes in these networks, leading (o
cascades of reactions thal eventually culmi-
nate in the action of the cell. In neurons, for
example, transmilters impinging on the
external membrane may be transduced to
cyclic nucleotide molecules  within the
neuron that serve as second messengers,

These can alfect target proteing on DNA,
on the various internal fibrous struchures of
the cell (the cyloskeleton} or on the mem-
brane. The targel proteins then activate
effector protems: [lor example, membrane
chamnel protemns that control the nerve
impulse  (Liberman, Minina, and Golubtsov
1975).

The cell in Fig. 1 is schematically pic-
tured as a kind of mixing chamber. In fact
the interior of the cells of higher organisms
is highly structured, with many {ibers and
membranous interfaces. The fibers, as noted
above, are referred to as the cytoskeleton,
since they are responsible for maintaining
the structure of the cell. They are some-
times thought of as micro-muscle, since
they contribule significantly to cellular
motions and to the movement of materials
within the cell. Some lines of evidence
suggest that the cytoskeletal [ibers also act
as a kind ol micronervous system within
cells and neurons thal serves to coordinate
internal activilies (like the highly choreo—
graphed process of cell division) and
plausibly o mediale more subtle forms of
signal processing pertinent to the cell's
capability of integrating externzl signals in
space and time (Matsumoto and Sakai 1979;
Liberman el al. 1985; Hamerolf 1987).

The tabletop device to be described is a
highly abstracted version of this complex
intracelldar processing. Three basic ele-
ments enter into this abstraction. Macro
signals must be transduced to a form that
affects the activily of an enzyme or a
collection of enzymes. The action of the
enzyme must not be confined 1o an
averaging pracess that could he performed
by a transistor (e.g.. OR, AND, NAND). If
this were the case all of the powerful
shape-based recognition activity of the
enzyme would be lost. Programmability



should not be imposed since this requires
each  component to have a context
independent description that would vitiate
the distinctive advantage of enzyme-driven
computing, namely the possibility of utilizing
the vast number of pofential interactions in
multiple ways for rnultiple purposes. The
ley to the power of the system is sell-
organizing dynamics at the level of the
enzyme and at the level of macromolecular
networks. If the system could be pro-
gramimed  prescriptively, like a  digital
machine, then all the power of this sell-
organization would have to be suppressed.
Self-organizing  systems after all have s
mind of their own. Evolutionary adaptive
approaches are called for {(Conrad 1985;
1990)

3. The Tabletop Neuron

We constructed a tabletop prototype that
uses the enzyme malate dehydrogenase
(MIMH) 1o classify input signal patterns,
MDH occurs in a wide variety ol species
mcluding the microbial world and in plants.

In our experiments we used mitochondrizal
MDH from pig heart, a homodimer with
each monomer consisting of 314 amine acids
(Gleason et al, 1994),

MDUH catalyzes the oxidation of malate to
oxalacelate by reducing the oxidized form
{NAD'} of nicotinamide adenine dinucleolide
(NAD) to the reduced form NADH.

L— malale+ MﬁlD""ﬁl:lJmkzcelm‘e%- NADH+H™

NADH differs significantly from NAD  1n its
absorption of ultraviclet lighl. This property
of the reaclion product makes it convenient
ko monitor the achvity of malate dehy-
drogenase by spectrophotometric methods.
For high pH the equilibrium of the
reaction i3 on the right side. The time
course ol the reaction is allected Dby the
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sensitivity of the enzyme to chemical
context, 1e., the miben in which the reaction
lakes place. The milieu is composed from a
mumber of fixed components, such as the
subhstrates amdl  pH  bulfer, plus the
components representing the signals, In the
experiments to be descrbed here MaClz was
used as the signaling substance. Similar
elfects can also he achieved with CaCls, hut
the method is not restricted to ions or to
any delinite number of signal carriers.

The device itself is schematically illu-
strated in Fig. 2. Signals are injected into a
mixing chamher n two I ml poriions, taken
in any of [four possible combinations [rom
the twe signaling solutions. Solulions
representing 0 and 1 contain subsbrate in
the same guantity. but the 1-solution in ad-
dition contains signaling ions. The quantity
of MgCls representing a l-signal is chosen
so  that the sbsorbance resulting from a
single dose of sipnaling substance is maxi-
mally separated from the abscrbance pro-
duced either by a double dose or no dose
(whichever iz closer). The resaclion mixture
{a fluid phase ftraveling in an air-[lled
tubing, Fig. 3). is pumped to the spectro-
photometer. The accumulation of NADH
serves as output signal.
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After processing is completed the system
is cleared for the next input pattern by
pumping  distilled water through it. The
output signal is sent to a computer. If the
signal is ahove a single prescribed threshold
level a 1 is displayed, otherwise a 0. Several
trals are run 1o calibrate the thresheld.
When the reaclion mixture reaches the
cuvette the absorbance increases. This
increase is used to frigger a countdown fo a
subsequent absorption  measurement  that
decides the output. The actual implemen-—
tation is pictured in Fig. 4.

Fig 4

4. Enzymatic Pattern Classification

The XOR ocoperation requires a device to
sy yes (give a 1 output) in response 1o

hinary signal inpuls Q1 and 10 and to say
no f{give a 0 output) to 00 and 11 mput
patterns. The operation is linearly insepar—
able, corresponding to the fact that the
palterns to be placed n the yes and no
categories cannot be separated by a single
threshold (in contrast io NAND. AND and
OR operations). An element whose response
is linear apart from a single threshold
cannot perform the XOR, since 1t would be
necessary [or it to fire when the strength of
the combined input exceeds & lower
threshold and not fire when 1t exceeds =
higher threshold. I[ the vesponse of the
element  is  nonlinear (strictly  speaking
nonmonolonic)  then it 1s  possible  to
eliminate the nesd for the higher threshold
and therelore to convert the linearly inse-
parable npattermn recognition problem to a
linearly separable prablem.

An enzyme, to satisly this requirement,
must increase its aclivity in respense to one
dose of the signaling substance but decrease
it in response to two doses. We [ound that
MDH satisfies the requirement with respect
to MgCl; used as a signaling substance.
Thus when MDH is used as the enzyvme in
the mixing chamber the device vields a 0
output when the input is 00, a 1 ocutput
when the nput ig 10 or 01, and a G output
when the input is 11.

- 1 fputa
o o1 T fpot b



Fig. 5 illustrates a series of 42 XOR
tests, with the trigger set for an average 10
second response. The threshold was set
based on the first measurement of the thres
distinguishable input patterns (since 01l is
the same as 10 Only one input pattern
was incorrectly classified. It is possible to
choose a threshold that separates the cases
more securely (but all settings would leave
at least one failure in this series). Ten
seconds (s near the lumt of the device in its
present form, due in part to the type of
pump and spectrophotomeler employed. The
reaction that drives the device is the only
fundamental limiting factor. This can be
sped up by increasing the concentration of
engyme or by warming the reaction fluid.
The important pomnt is that MDH serves as
a transform that converts a linearly inse-
parable pattern recogrnition task into a
linearly separahble one.

5. Temporal Signal Processing

The XOR operation was implemented by
taking a snapshot of the response of our
tabletop neuron at a particular point in time
as output wvalue. The chemically encoded
signals were present ab the start of the
reaction. The course of the reachion was
determined by the imtial reaction conditions.
Reducing the amount of enzyme slows the
reaction down. Its progress can then con-
veniently be followed and 15 shown in g,
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4 for various amaounts of MgCle . As can be
seen from the crossing curves In g, 6, a
change in MgClz concentration has a guali-
tative effect on the course of the reaction.

To utilize the phenomenological enzyme
behavior we need to decide on an encoding
for the signal patterns to be processed. A
simple encoding scheme represents a
1-signal arnving on a signal line by a [ixed
amount of one subslance and a O-signal by
the absence of this substance. Such an
encoding allows for ihe implementiation of
commutative operations  {x:y=y-x) only,
since a change in the order of the operands
will not lead to a change in the chemical
milien. Therefore 2-bit input patterns will
give rise to 3 possible milien states, here
called g for a 00-input, & for either 01- or
10-input, and ¢ for 1l-input. If operations
are to be implemented that are not com-—
mulative, a larger number of signaling sub-—
stances could be used. It is then possible fo
encode the signal line together with the
signal, i.e., the state of the line.

With the signal encoding decided upomn,
the possible mulien conditions at the start of
the reaction are known, Differences in the
starting milien are mapped by the reaction
into different absorbance values. From the
absorbance measurements in Fig. § it is
possible  to  calculate how  the reaction
groups the input signal patterns. The tune
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development of the grouping is shown in
Fig. 7 as distances among the responses to
the 3 possible millen states. For imple-
menting a desired mput-outpul map the
minimum  difference in  the response to
signal patterns that need to be differentiated
is important, since this distance corresponds
to the signal strength. Fig., 8 shows the
signal strength for the XOR operation. The
signal strengths for particular classilications
change with the progress of the reaction.
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Signals arriving at different limes will
therefcre  meet  dillerent states ol the
reaction medium and accordingly alfect the
differently.
devices could be used in this way to

reacton Enzyme  conbrolled
integrate signals in space and time. in
analogy to the spatiotemporal processing
performed by natural hiological cells.

Note that the tume axes in the [igures
discussed here are relative lo the reaction
speed. To implement pattern classification it
is possible to run the reactions much faster
{as was done in the experiment discussed in
section 4). However, a high reaction speed
is nol convenient for studying the time
course of the reaction.

6. Toward Molecular Co-processors

Chur prototvpe could be migrated to a
moere  practical device using  microlluidics

{(Hadd et al. 1997). Such lab-on-a-chip
modules  could be adapted for desired
[unction by varying the coding of the inputs
and tuning the reaction milien (as in the
tabletop  experiments above), cheoosing  the
reaction parameters used for readout
{(Kessler 1994), wvarying and combining
enzymes, or modifying enzymes through
directed evolution (Beaudrv and Jovee 1992;
Gao et al. 1997). The addition of more Lypes
of signaling substances and coupling to
other enzymatic reactions should increase
the complexity ol the patterns that can be
processed. MDH is [requently used as an
indicator reaction in assays and therefore
protocols for linking to other enzymes are
available {cf. Williamson and Corkey 1969).
Our expectation is that the computational
capahilities of many enzymes could usefully
be investigated using the methodology
outlined here.

The evolutionary adaptation approach is
called for due o the context sensitive
dynamics ol enzvme networks. This is
incompatible with conventional preogram-
mahility. It might be possible 1o eliminate
the econtext sensitivity, but this would
ahrogate the unique advantage of enzyvine-
based computing (Conrad 1983).

We envision migrating elaborated signal
processing modules to  microchip devices
that can bhe integrated with conventional
electronic signal processig. The decrease in
reacticn  volume would  increase  speed.
Alternative designs using enzyme immaobili-
zation techmiques (DuVal, Swaisgood, and
Horton  1985) and coupling to dies  for
opkoelectronic  readout could be utilized
{(Whitaker 1969; Michal, Ma-llering, and
Siedel 1983).

The tabletop device can be used to
experiment with such hybrid architectures.
Servos intended for model airplanes can be



employed as shown in Fig. 9 to operate the
valves and syringes.

Fig. 9

7. Arificial Neuromolecular Archi-

tectures

Automation should speed the development
of a useful repertoire of biochemical neu-
rons, buf this is still a big task. In the
meantime it is possible to experiment with
simulated neuromolecular architectures. The
idea 1s to use neurons that draw on internal
signal inlegration mechanisms to perform
complicated input-output transforms and Lo
combine these into stroctures thabl can
perform coherent perception—action tasks.
Our group has developed a series of such
models (e.g., Kampfmer and Conrad 1983;
Kirby and Conrad 1986 Conrad et al. 1959
Ugur and Conrad 1999). An  architecture
developed with J].-C. Chen is indicative.
This consists of cellular automalon neurens
that model cyvtoskeletal signal processing.
The complex nternal  dynamics of the
neurons allows for Lhe evolution of a wide
variety of nput-output transforms. Redund-
ant subnetworks can evolve independently
and the resulting neurons are then harvested
and combined in different ways by a higher
level evolufionary algoritlhim. The system
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has been applied to a varety of problem
domains, Including marze navigation (Chen
and Conrad 1994), Chinese character
classification (Chen and Conrad 1997), and
most recently to hepatifis diagnosis (Chen
2000).

Architectures such as the above provide
impertant hints about the adaptive pro—
cedures that would be pertinent to systems
of real neurons. The simulated neurons ot
course have much less power than would be
possible  with actual biochermical embedi-
ments. That useful functionality 1s obtained
with a simulated system suggests that re-
placing the simulaied Imochemical neurons
with actual biochermical neurons would vield
much more powerful computational capabili-
tics.

8. Directions

The rtesults reported here appear o have
implications for the neurcn doctrine. Most
technical neural computing models still
assume essentially rather simple neurons.
Many brain models take their cue from
these technological sysltems, despite the
evident complexity of real neurons. The fact
that a single enzyme type can transform a
linearly inseparable problem to a linearly
separable one strongly suggests that real
biological neurons have capsbilities that far
exceed those tvplcally represented mn cuwrent
neurocomputing madels.

Our working hypothesis is that multi-
enzyme extensions of the enzyme-driven
systemm profotyped here could transtorm
diflicult pattem grouping problems  into
forms manageable by conventional techni-
gues. Devices of this type could serve as
molecular co-processors that provide novel
computational synergies for digital machines.
In time networks of artificial molecular
neurons may be evolved for a wide variety
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of special purpose applications that are
refractory to currently availahle technologies.
Much remains to be done. but perhaps some
day 1t will be possible to achieve an artili-
cial Clever Hans,
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Figure Captions

Tigure 1: Conformational signal processing
in  hiological cells Tmpinging chemical
signals  directly or indirectly affect the
internal milieu of  the cell. The
conformational dynamics of proteins  and
other macromolecules is selectively sensitive
to these milien [eatures. These nonlinear
dynamucs in  effect process the milien
influences to  wvield internal or external
cellular actions.

Figure 2: Flow system used in the XOR
experiments. Signals are injected [rom any
two of four svringes (351 to 54). The
l-syringes (S1 and $2) are filled [rom
reservolr R1 thal conlains signal substance
(Mg™) plus substrate. R2, the reservor for
the O-syringes (53 and S4). comtains
suhstrate In the same conceniration as Il
but no signaling substance. Signals are
injected through valves (labeled by V) into
the mixing chamber. Enzyme solution (MDI
and NAD' in Dbufler) is stored in the
thermally isclated reservoir R3. The reaction
is initiated by injecting this solution, using
syringe S5, into the mixing chamber. The
reaction mixture is drawn by a peristaltic
parmp into a flow cuvette installed in the
spectrophotometer, The absorbance ol the
product WADH at 339 nm serves as outpul
signal. Reservoir R4 contains distilled water
which is used to wash the svstem clean
after the input pattern 18 processed. T
valves {T1 to TH) are vsed to switch [rom
processing to clearing. Tubes labeled atm
{atmosphere) are air in/outlets.

Figmre 3 Two phase transport utitized in
the tabletop Implementation. The reaction

medium  ([uid phase) travels in amr—filled
{pas—phase} ftubing [rom the mixing
chamber 1o the detector.

Figure 4. Laboratory setup used to
implement the artificial neuron.

Figure 5 Pattern orouping with MDH as
Mustrated by XOR lask. The three
distingnishable Input patterns are grouped
into twa output categories  depending  on
whether the amount of product formed is
above or helow the threshold (T} The time
when measurements used [or classification
are taken is controiled by a trigger
mechanism. The times [all hetween & and
11 seconds after start ol the reaction, wilh
two exceptions. The lasi measuwrement in
the 00 and also the 11 paltern sets were
triggered early, leading to low absorbance
values {denoted by A). The 10 second
absorbance values recorded were below the
threshold and hence would still have been
correctly classified. A (-signal 18 repre-
sented hy 1 ml of 7.1 mM malate and 112
miM glycine. A I-signal is represented by 1
ml of 190 mM MgCly , 7.1 mM malate, and
112 mM glycine. Both signal solutions are
adjusted to pIHl 105 with NaOH. Two ml of
mnput signal solution constitute an  input
pattern. The reaction is initiated when this
combines with 1 ml of MDH-NAD" solution
(5.3 mM NAD' in MOPS bhuffer adjusted to
pH 7.4 with NaOH}.

Figure 6. Measured absorbance change
over time for various Mg~ concentrations,
The reaction medium contained 4.6 mM
L-malic acid, 1.8 mM NAD™ . and 13.2 mM
MOPS (3-[N-morpholinolpropanesulfonic acid,
used to bufler the enzyme (porcine heart
mitochondrial MDH) and NAD' solutions)
and was Dbulfered by 92 mM glycine
adjusted to pH 10 with NaOH. The protocol
was derived from the assay described by
Englard and Siegel {1969).



Figure 7: Absorbance difference (A4A) in
response (1) to the three possible milieu
states that can result from 2-bi  inpui
patterns (a = 00, b = 0L or 10, ¢ = 11). The
curves are computed from data in Fig. §,
assuming a l-signal is represented by 6G.7
mM MgCla,

Figure 8. Time development of XOR
signal sirength. The signal strength { As) 1s
given by r(b) Max( ria), ric) ) cf. Fig. 7
for netation. The increase in noise for
longer reaction times i1s associated with the
high absorbance values at these times. The
curve is calculated assuming the same
signal encoding as in Fig. 7.

Figure 9° Interfacing the artificial enzy-—
matic neuron with a conventional archi-
tecture. Servos fram radio contralled models
can be operated through pulse-width modu-
lation hy a digital computer. The servo on
the left side steers a T-valve and the servo
on the right positions a syringe pump.
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