• Title/Summary/Keyword: Enzyme cloning and expression

Search Result 240, Processing Time 0.02 seconds

Zoogloea ramigera 115SLR의 생고분자물질 생합성에 관여하는 pyruvyl transferase gene의 cloning 및 염기서열 결정

  • 이삼빈
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 1996
  • A gene coding for a pyruvyl transferase enzyme involved in exopolysaccharide biosynthesis of Zoogloea ramigera 115SLR was isolated and sequenced. A 4.5 kb of BamHI DNA fragment was isolated from chromosomal DNA using a probe derived from ketal pyruvyl transferase gene of Xanthomonas campestris. The nucleotide sequence of 2.66 kb Pst1/HindIII DNA fragment which was homology with a probe revealed the existence of two complete open reading frames (ORF2 and ORF3) and two partial open reading frames (ORFI and ORF4). The deduced amino acid sequence of ORF3 was homologous to the ketalase (GumL product) of X campestris with 49.5% of similarity and 21.6% of identity. ORF2 on the other hand showed the higher identity with the ketalase (ExoV product) of Rhizobium meliloti (36%) as well as the ketalase of X campestris (23%) than that of ORF3. A gene product of ORF2 was determined with a bacteriophage T7 RNA polymerase/promoter system in E. coli. The molecular weight of protein was 33,500 dalton.

  • PDF

TALEN Constructs and Validation for Targeting of SETDB1 Genomic DNA (SETDB1 genomic DNA 를 표적하는 TALEN construct 제작 및 분석)

  • Noh, Hee-Jung;Kang, Yoonsung;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1269-1275
    • /
    • 2014
  • TALEN is a newly developed gene engineering method to knock out specific genes. It contains a DNA binding domain and a Fok1 nuclease domain in the TALEN plasmid. Therefore, the engineered TALEN construct can bind to any region of genomic DNA and cut the target nucleotide, thereby inducing mutation. In this study, we constructed two TALEN constructs targeted to a protein initiation codon (DBEX2) or the 25th upstream region (DBPR25) to enable mRNA synthesis of SETDB1 HMTase. We performed the TALEN cloning in two steps. The first step was from module vectors to pFUS array vectors. We confirmed successful cloning with a colony PCR experiment and Esp31 restriction enzyme digestion, which resulted in a smear band and a 1 Kb insert band, respectively The second step of the cloning was from a pFUS array vector to a mammalian TALEN expression vector. The engineered TALEN construct was sequenced with specific primers in an expression vector. As expected, a specific array from the module vectors was shown in the sequencing analysis. The specific module sequences were regularly arrayed in every 100 bp, and SETDB1 expression totally disappeared in the TALEN-DBEX2 transfection. PCR amplification targeting of DBEX2 was performed, and the PCR product was digested with a T7E1 restriction enzyme. The expression of SETDB1 was down-regulated in the TALEN-DBPR25 transfection. Morphological changes were also observed in the two TALEN constructs with transfected HeLa cells. These results suggest that the engineered TALEN constructs in two strategic approaches are very useful to knock-out of the SETDB1 gene and to study gene function.

Cloning, Expression, and Characterization of a Cold-Adapted and Surfactant-Stable Alginate Lyase from Marine Bacterium Agarivorans sp. L11

  • Li, Shangyong;Yang, Xuemei;Zhang, Lan;Yu, Wengong;Han, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to find a cold-adapted and surfactant-stable alginate lyase as a candidate for biotechnological and industrial applications. The gene for a new alginate lyase, AlyL1, from Agarivorans sp. L11 was cloned and expressed in Escherichia coli. The recombinant AlyL1 was most active at 40℃ (1,370 U/mg). It was a cold-adapted alginate lyase, which showed 54.5% and 72.1% of maximum activity at 15℃ and 20℃, respectively. AlyL1 was an alkaliphilic enzyme and most active at pH 8.6. In addition, it showed high stability in the presence of various surfactants at a high concentration (from 0.1% to 1% (w/v)). AlyL1 was an endo-type alginate lyase that degraded both polyM and polyG blocks, yielding disaccharides and trisaccharides as the main products. This is the first report of the cloning and functional expression of a cold-adapted and surfactant-stable alginate lyase. AlyL1 might be an interesting candidate for biotechnological and industrial applications.

Purification and Characterization of Recombinant Anthrax Edema Factor (부종요소 단백질의 정제 및 특성분석 연구)

  • Kim, Yu-Gene
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.710-718
    • /
    • 2011
  • Edema factor(EF) is a portion of anthrax toxin which produces edema when combined with protective antigen. This paper describes about technique for cloning, expression, purification and activity test of EF. Using the E. coli expression system, we could make recombinant EF protein although it's origin is Bacillus anthracis. And also we could culture massively and purify highly pure protein. Finally we confirm a enzyme activity of purified EF to increase intracellular cAMP level. Through establishing this technique, it can be possible to research about EF in depth and apply to expression and purification of many other protein in biology.

Construction of Expression Vector for Functional Analysis of Target Protein in Streptomyces sp.

  • Lee, Yong-Jik;Ryu, Jae-Ki;Kim, Hyun-Soo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Streptomycetes are gram-positive filamentous bacteria that are well-known for producing a vast array of bioactive compounds, including more than 70 % of commercially important antibiotics. For the research about Streptomyces sp., the protoplast and electroporation transformation method have been the general techniques for the construction of transformants. However, these techniques have low efficiency and are time-consuming. Another option is intergenic conjugation, which is used for DNA transfer using methylation-deficient E. coli as a DNA donor to avoid the methylated-DNA-dependent restriction systems of actinomycetes. This conjugation method has been widely improved and applied to many other actinomycetes. In this research, an effective transformation procedure for the construction of expression vector by using gateway system was established to avoid limit of restriction enzyme site for cloning of target gene based on transconjugation by Escherichia coli ET12567/pUZ8002 with a pSET152 integration vector.

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR

  • SHIN HEA-JIN;LEE SUNG-KYOUNG;CHOI JEONG JIN;KOH SUK-HOON;LEE JUNG-HYUN;KIM SANG-JIN;KWON SUK-TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1359-1367
    • /
    • 2005
  • The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3'{\rightarrow}5'$ exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3'{\rightarrow}5'$ proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.

Cloning, Expression, and Characterization of a Hyperalkaline Phosphatase from the Thermophilic Bacterium Thermus sp. T351

  • Choi Jeong-Jin;Park Jong-Woo;Shim Hye-Kyung;Lee Suk-Chan;Kwon Moo-Sik;Yang Joo-Sung;Hwang Heon;Kwon Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.272-279
    • /
    • 2006
  • The gene encoding Thermus sp. T351 alkaline phosphatase (T351 APase) was cloned and sequenced. The gene consisted of 1,503 bp coding for a protein with 500 amino acid residues including a signal peptide. The deduced amino acid sequence of T351 APase showed relatively low similarity to other Thermus APases. The T351 APase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21 (DE3). The expressed enzyme was purified by heat treatment, and $UNO^{TM}$ Q and $HiTrap^{TM}$ Heparin HP column chromatographies. The purified enzyme exhibited high activity at extremely alkaline pHs, reaching a maximum at pH 12.0. The optimum temperature of the enzyme was $80^{\circ}C$, and the half-life at $85^{\circ}C$ was approximately 103 min. The enzyme activity was found to be dependent on metal ions: the addition of $Mg^{2+}$ and $CO^{2+}$ increased the activity, whereas EDTA inhibited it. With p-nitrophenyl phosphate as the substrate, T351 APase had a Michaelis constant ($K_{m}$) of $3.9{\times}10^{-5}M$. The enzyme catalyzed the hydrolysis of a wide variety of phosphorylated compounds.

Molecular Cloning and Expression of Alkaline Amylase Gene of Alkalophilic Bacillus sp. in Bacillus subtilis and Escherichia coli (알카리성 Bacillus sp.의 호알카리성 amylase 유전자의 Bacillus subtilis와 Escherichia coli로의 cloning과 발현)

  • Bae, Moo;Park, Shin-Hae
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.160-164
    • /
    • 1989
  • A 5.7Kb EcoRI fragment containing alkaline amylase gene of Bacillus sp. AL-8 obtained in the previons experiment (10) was transformed in B. subtilis via plasmid pUB110. The enzymatic proper-ties of the amylase produced by the transformants were Identical to those of the donor strain. Thus, the alkaline amylase activity from the transformant was maximum at pH 10 and 5$0^{\circ}C$. And the enzyme was very stable over the ranges of alkaline pH. In order to determine the location of the alkaline amylase gene within the 5.7Kb DNA fragment, the fragment was subcloned in E. coli. It was found that the alkaline amylase gene was located k EcoRI fragment of 3.7Kb.

  • PDF

Construction of a Baculovirus Expression System Using Hyphantria cunea Nuclear Polyhedrosis Virus for Eukaryotic Cells

  • Lee, Hyung-Hoan;Kang, Bong-Joo;Park, Kap-Ju;Cha, Soung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.676-684
    • /
    • 1998
  • Baculovirus transfer and expression vectors with Hyphantria cunea nuclear polyhedrosis virus (HcNPV) were constructed. An initial transfer vector, pHcEV, constructed using HcNPV was previously reported (Park et al. 1993. J. Kor. Soc. Viral. 23: 141-151). Herein, the size of the vector was properly reduced, and a functionally perfect vector was constructed and named pHcEV-IV (6.7 kb). The vector has a 2.2-kb HcNPV DNA sequence in the 5'-flanking region of the vector's polyhedrin gene promoter. The 1.8-kb HcNPV DNA sequence, poly A signal sequence, T3 primer sequence, and 13 multicloning site sequences, in order, were ligated in front of the translation start codon of the polyhedrin gene. The cloning indicating marker lacZ gene was inserted into the pHcEV-IV, named pHcEV-IV-lacZ, and transferred into the wild-type virus. Recombinant expression virus, lacZ-HcNPV, was constructed by replacing the lacZ gene in the pHcEV-IV-lacZ with the polyhedrin gene of the wild-type virus. The recombinant virus was isolated from blue plaques that produce $\beta$-galactosidase without polyhedra. The lacZ gene insertion was confirmed by Southern hybridization analysis. The expression of the lacZ gene in Spodoptera frugiperda cells infected with the lacZ-HcNPV was examined by SDS-PAGE and colorimetric assay. One 116-kDa LacZ protein band appeared on the PAGE. The production rate of the $\beta$-galactosidase was approximately 50 international units (IU) per min per ml between 2 to 5 days postinfection (p.i.). The highest activity occurred at five days p.i. was 170 IU/min/$m\ell$. The enzyme activity first appeared about 20 h p.i. as measured by colorimetric assay.

  • PDF

Cloning and Expression of $\beta$-Xylosidase Gene from Alkali-tolerant Bacillus sp. YA-14 in Escherichia coli (알카리 내성 Bacillus sp. YA-14의 $\beta$-Xylosidase 유전자의 Cloning 및 대장균에의 발현)

  • 박덕철;김진만;정용준;공인수;배동훈;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.574-579
    • /
    • 1989
  • Chromosomal DNA fragments of Bacillus sp. YA-14, isolated from soil as a potent $\beta$-xylosidase producing bacterium, were ligated to a vector plasmid pBR322 and used to transfer Escherichia coli HB101 cells. The recombinant plasmid pYXL22 was found to enable the transformants to produce $\beta$-xylosidase. pYXL22 was found to contain the 7.0 kb HindIII DNA fragment originated from the Bacillus sp. YA-14 chromosomal DNA by Southern hybridization. The optimum temperature for the reaction of $\beta$-xylosidase produced by E. coli HB101 (pYXL22) was appeared at 3$0^{\circ}C$. The enzyme was maintained stably up to 4$0^{\circ}C$ when stored 1hr at 4$0^{\circ}C$. The $\beta$-xylosidase was repressed completely by 0.4% (w/v) glucose concentration in E. coli HB101 (pYXL22). The optimum concentration of xylose for the $\beta$-xylosidase production in Bacillus sp. YA-14 was 0.2% (w/v).

  • PDF