Construction of Expression Vector for Functional Analysis of Target Protein in Streptomyces sp.

  • Lee, Yong-Jik (System & Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Jae-Ki (Department of Biomedical Laboratory Science, Gimcheon University) ;
  • Kim, Hyun-Soo (Department of Microbiology, Keimyung University)
  • 투고 : 2011.10.06
  • 심사 : 2012.03.25
  • 발행 : 2012.03.31

초록

Streptomycetes are gram-positive filamentous bacteria that are well-known for producing a vast array of bioactive compounds, including more than 70 % of commercially important antibiotics. For the research about Streptomyces sp., the protoplast and electroporation transformation method have been the general techniques for the construction of transformants. However, these techniques have low efficiency and are time-consuming. Another option is intergenic conjugation, which is used for DNA transfer using methylation-deficient E. coli as a DNA donor to avoid the methylated-DNA-dependent restriction systems of actinomycetes. This conjugation method has been widely improved and applied to many other actinomycetes. In this research, an effective transformation procedure for the construction of expression vector by using gateway system was established to avoid limit of restriction enzyme site for cloning of target gene based on transconjugation by Escherichia coli ET12567/pUZ8002 with a pSET152 integration vector.

키워드

참고문헌

  1. Baltz RH. Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol. 1998. 6: 76-82.
  2. Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992. 116: 43-49.
  3. Chater KF. Genetics of differentiation in Streptomyces. Annu Rev Microbiol. 1993. 47: 685-713.
  4. Choi SU, Lee CK, Hwang YI, Kinishita H, Nihira T. Intergeneric conjugal tansfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin $B_1$ producer. Arch Microbiol. 2004. 181: 294-298.
  5. Combes P, Till R, Bee S, Margaret C, Smith M. The Streptomyces Genome Contains Multiple Pseudo-attB Sites for the ${\Phi}C31-Encoded$ Site-Specific Recombination System. J Bacteriol. 2002. 184: 5746-5752.
  6. Demain AL, Somkuti GA, Hunter-Cevera JC, Rossmoore HW. Novel Microbial Products for Medicine and Agriculture. Elsevier Science Ltd. 1989. New York, USA.
  7. Du YL, Shen XL, Yu P, Bai LQ, Li YQ. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol. 2011. 77: 8415-8426.
  8. Du YL, Shen XL, Yu P, Bai LQ, Li YQ. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol. 2011. 77: 8415-8426.
  9. Hwang JH, Lee CK, Lee KM, Jo BK, Park HR, Hwang YI. Development of a Recombinant Streptomyces griseus with sprA and sprB Genes for Proteolytic Enzyme Production. Kor J Microbio. 2005. 41: 87-92.
  10. Hwang JH, Lee CK, Lee KM, Jo BK, Park HR, Hwang YI. Development of a Recombinant Streptomyces griseus with sprA and sprB Genes for Proteolytic Enzyme Production. Kor J Microbio. 2005. 41: 87-92.
  11. Jnawali HN, Yoo JC, Sohng JK. Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes. Biotechnol Lett. 2011. 33:1221-1226.
  12. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics. 2000. The John Innes Foundation. Norwich, UK.
  13. Kim DY, Hwang YI, Choi SU. Cloning of metK from Actinoplanes teichomyceticus ATCC31121 and effect of its high expression on antibiotic production. J Microbiol Biotechnol. 2011. 21: 1294-1298.
  14. Kitani S, Bibb MJ, Nihira T, Yamada Y. Conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces lavendulae FRI-5. J Microbiol Biotechnol. 2000. 10: 535-538.
  15. MacNeil DJ. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol. 1988. 170: 5607-5612.
  16. Matsushima P, Baltz RH. A gene cloning system for Streptomyces toyocaensis. Microbiology 1996. 142: 261-267.
  17. Mazodier P, Petter R, Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol. 1989. 171: 3583-3585.
  18. Park JW, Park SR, Nepal KK, Han AR, Ban YH, Yoo YJ, Kim EJ, Kim EM, Kim D, Sohng JK, Yoon YJ. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol. 2011. 7: 843-852.
  19. Paudel S, Lee HC, Kim BS, Sohng JK. Enhancement of pradimicin production in Actinomadura hibisca P157-2 by metabolic engineering. Microbiol Res. 2011. 167: 32-39.
  20. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual (ed.) 2, 1989. Cold spring harbor laboratory, Cold spring harbor, New York, USA.
  21. Stegmann E, Pelzer S, Wilken K, Wohlleben W. Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417-CF17, the ethylenediaminedisuccinic acid producer. J Biotechnol. 2001. 92: 195-204.
  22. Swiatek MA, Tenconi E, Rigali S, van Wezel GP. Functional Analysis of the N-Acetylglucosamine Metabolic Genes of Streptomyces coelicolor and Role in Control of Development and Antibiotic Production. J Bacteriol. 2012. 194: 1136-1144.
  23. Voeykova T, Emelyanova L, TabakovV, Mkrtumyan N. Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett. 1998. 162: 47-52.