• Title/Summary/Keyword: Enzymatic

Search Result 3,102, Processing Time 0.024 seconds

Antioxidant Activity of Aqueous Extract of Coscinium fenestratum in STZ-Nicotinamide Induced Diabetic Rats

  • Punitha, I.S.R.;Bhat, Nalini;Rajendran, K.;Shirwaikar, Arun;Shirwaikar, Annie
    • Natural Product Sciences
    • /
    • v.11 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • The aqueous extract of Coscinium fenestratum was studied for its antioxidant status in STZ-nicotinamide induced type 2 diabetic rats at two dose levels of 250 mg/kg and 500 mg/kg. At the end of the experimental period, diabetic rats treated with aqueous extract at both dose levels showed a significant increase in the levels of enzymatic antioxidants such as glutathione peroxidase, glutathione synthetase, peroxidase, superoxide dismutase and catalase as compared to the untreated control. Similarly, a significant increase was also observed in the levels of the non enzymatic antioxidants ceruloplasmin, ascorbic acid and tocopherol. The results suggest that the aqueous stem extract of C. fenestratum prevents type 2 diabetes mellitus induced oxidative stress.

전처리 공정에 따른 폐 신문지의 효소 가수분해 특성

  • Mun, Nam-Gyu;Lee, Jae-Hwan;Kim, Seong-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.459-462
    • /
    • 2000
  • The pretreatment of used newspaper for the enzymatic digestion preprocess was performed on a percolation reactor and a batch reactor. The test condition of percolation process was $170^{circ}C$, 60min, 1 mL/min, and 400psi, that of batch was $40^{circ}C$, 3hr. and latm Reaction solutions used in pretreatment process were aqueous ammonia, sulfuric acid, water, and hydrogen-peroxide as an oxidizing agent. As a result, the effect of pretreatment was similar to batch and percolation process, but the yield of enzymatic hydrolysis was higher in batch than percolation. This batch pretreatment enhanced enzymatic hydrolysis rate and increased glucose yield from about 15 to 20%. The inhibition factors influenced the rate of enzymatic hydrolysis was investigated, and the ink contented newspaper was the major factor.

  • PDF

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Optimization of Refolding Conditions for the Aklavinone 11-Hydroxylase of Streptomyces peucetius Overexpressed in Escherichia coli. (대장균에서 대량 발현된 Streptomyces peucetius유래 Aklavinone 11-Hydroxylase효소의 최적 가용화 조건)

  • 민우근;홍영수;최용경;이정준;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.365-368
    • /
    • 1998
  • The aklavinone 11-hydroxylase which was overexpressed using T7 promoter in E. coli could be detected in SDS-PAGE only in insoluble precipitate without any detectable enzyme activity. The insoluble enzyme was solubilized in 6M guanidine$.$HCl solution and their refolding ability was tested under various conditions. When the enzymatic activity was checked by the bioconversion experiment, stepwise dialysis against 6M, 3M, 1M guanidine$.$HCl and finally 100 mM potassium phosphate buffer of the solubilized protein gave the best bioconversion efficiency. The aklavinone 11-hydroxylase showed its enzymatic activity in the reaction buffer containing NADPH with vigorous shaking. The enzymatic activity was lost during partial purification and regained by the addition of crude extract of S. lividans in the reaction mixture. This effect was confirmed to due to some low-molecular weight component(s) in the crude extract, because the addition of dialyzed crude extract could not recover the enzymatic activity.

  • PDF

Development of High Efficient Enzymatic Deinking Agent by Microorganism(I) -Isolation and Screening of Bacteria Producing Cellulase and Xylanase- (미생물 효소를 이용한 고효율 효소 탈묵제의 개발(제1보) -Cellulase와 Xylanase를 생산하는 Bacteria의 분리 및 선발-)

  • 박성철;강진하;이양수
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.34-40
    • /
    • 2003
  • This study was carried out to select the useful bacteria which secret extracellula enzymes for enzymatic deinking agent of old newspaper. CMCase, FPase and xylanase activities of the bacteria liquid culture were measured at optimal growth conditions. Clear zone test was checked on the solid culture. The results of this study were as follow: Eight strains of 28 bacteria isolated from a paper mill soil ground were shown strong CMCase and xylanase activity with the clear zone test. The optimal pH and temperature for culture growth were 6~8 and 26~$34^{\circ}C$, respectively and optimal culture period were less than 60 hours. Based on CMCase, FPase and xylanase activity, strain No. 18, 21, 22 and 28 which were relatively higher than the other strains, were selected for further enzymatic deinking research.

Catalytic Activity of DNA-Pt Complex

  • Matsuoka, Yuki;Kojima, Toshinori;Higuchi, Akon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.253-253
    • /
    • 2006
  • DNA has not been played the role as a biocatalyst in evolutionary history, although RNA and protein function as a biocatalyst. DNA double helix structure is believed to be impossible to form intricate active enzymatic sites. In addition, the chemical stability of DNA prevents the ability from self-modifying reactions. However, recent development of DNA engineering enables to create artificial enzymatic ability of DNA (deoxyribozyme) such as RNA cleavage and DNA modification. We investigated optimal conditions for enzymatic activity of DNA-Pt complex, and compared it with that of horse radish peroxidase. We report here that base sequence of DNA, pH and temperature affect the enzymatic activity of DNA-Pt complex.

  • PDF

Hydrolysis of Pulp Sludge for Lactic Acid Fermentation using Enzyme System

  • Lee, Sang-Mok;Jianqiang, Lin;Gu, Yun-Mo
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.504-507
    • /
    • 2000
  • Enzymatic hydrolysis of cellulose was studied with emphasis on the effect of cellulase loading and pulp sludge concentration on glucose yield. Enzyme loading appeared to have a significant effect on glucose yield. Chemical pretreatment had no effect on enzymatic hydrolysis of pulp sludge. High glucose yield was obtained from enzymatic hydrolysis, especially at sludge concentrations lower than twenty percent. The optimum concentrations of crude cellulase and ${\beta}-glucosidase$ were 5 U/mL and 8 U/mL, respectively, considering the amount of enzymes used and glucose produced.

  • PDF

Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha intestinalis (창자파래로부터 환원당 생산을 위한 효소가수분해의 최적 반응조건)

  • Kim, A-Ram;Kim, Dong-Hyun;Jeong, Gwi-Taek
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.53-57
    • /
    • 2015
  • In this study, the production of total reducing sugar from macro green-algae Enteromorpha intestinalis by enzymatic hydrolysis was investigated. As a result of enzymatic hydrolysis using 13 kind commercial enzymes, the highest yield of 8.75% was obtained from Viscozyme L, which is multi-enzyme complex such as cellulase, arabanase, beta-glucanase, hemicellulase and xylanase. As a control, only 0.33% and 0.27% yield were obtained from 1% sulfuric acid and 0.05 M citrate buffer (pH 4.8), respectively. In the case of enzyme mixture, the mixture of $Viscozyme^{(R)}$ L and $Cellic^{(R)}$ CTec2 (1:1) was presented the highest yield of 10.67%. Finally, the 14.99% yield was obtained at 36 hr under the condition of 10% biomass and 30% enzyme mixture.

Effect of Enzymatic Hydrolysis of Cellulose Nanofibers on the Properties of Poly (Vinyl Alcohol) Nanocomposite

  • Han, Song-Yi;Park, Chan-Woo;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 2017
  • Enzymatic treatment was conducted to hydrolyze pure cellulose nanofiber (PCNF), holocellulose nanofiber (HCNF), and lignocellulose nanofiber (LCNF) for 6, 24 and 72 hours and thus-obtained nanofibers (1, 3, 5, 10 wt%) were used to reinforce polyvinyl alcohol (PVA). Glucose production yield was increased by enzymatic hydrolysis. Tensile strength and elastic modulus of all PVA nanocomposite reinforced three nanofibers were improved by increasing enzymatic hydrolysis time of nanofibers and these values were higher in order of nanocomposite reinforced with PCNF>HCNF>LCNF. Furthermore, tensile properties of nanocomposite with PCNF were increased by nanofiber content. Thermal stability of PVA was improved by adding nanofibers and by increasing nanofiber content.

Production of Brewer's Yeast Extract by Enzymatic Method (효소 분해법에 의한 맥주효모 추출물의 제조)

  • 이시경;박경호;백운화;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.276-280
    • /
    • 1993
  • Cell lytic enzyme, 5'-phosphodiesterase, and AMP-deaminase were used to produce yeast extract as a natural seasoning from beer yeast cells. Prior to the addition of cell lytic enzyme, heat treatment was performed to increase the cell wall degradation` the optimum condition of the cell lytic enzyme was 50C at pH 7.0. The production yields by the enzymatic method and conventional autolysis method were 42% and 35%, respectively. The total quantity of 5'-nucleotides, GMP and IMP, produced by enzymatic method was increased by 45% than that by the conventional method. Futhermore, the operation time of enzymatic method was only 6.5 hrs, significantly reduced from 24 hrs of the conventional method.

  • PDF