References
- Choi, D., H. S. Sim, Y. L. Piao, W. Ying, and H. Cho (2009) Sugar production from raw seaweed using the enzyme method. J. Ind. Eng. Chem. 15: 12-15. https://doi.org/10.1016/j.jiec.2008.08.004
- Demibras, A. (2007) Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33: 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
- Han, Y. B. (2010) Edible Seaweed II - Components and biological activity. pp. 262-269. Korea University Pres, Korea.
- Hayes, D. J., S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross (2006) The biofine process - Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, pp. 139-164. In Kamm, B., Gruber, P. R. and M. Kamm (eds.), Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Doopedia, Enteromorpha intestinalis, http://www.doopedia.co.kr. (2015)
- Jeong, G. T. and D. H. Park (2014) Effect of pretreatment method on lipid extraction from Enteromorpha intestinalis. KSBB J. 29: 22-28. https://doi.org/10.7841/ksbbj.2014.29.1.22
- Jeong, G. T. (2014) Production of total reducing sugar and levulinic acid from brown macro-algae Sargassum fulvellum. Korean J. Microbiol. Biotechnol. 42: 177-183. https://doi.org/10.4014/kjmb.1404.04005
- Kim, C. (2010) Saccharification of Gelidium amansii by acid hydrolysis to generate mixed sugars. M.S. Thesis. Kyung Hee University, Seoul, Korea.
- Kim, D. H. and G. T. Jeong (2014) Antimicrobial and antioxidant activities of extracts of marine greenalgae Enteromorpha intestinalis. KSBB J. 29: 92-97. https://doi.org/10.7841/ksbbj.2014.29.2.92
- Kim, J. K. (2010) Pretreatment and enzymatic hydrolysis of Ulva pertusa Kjellman. M.S, Thesis. Inha University, Incheon, Korea.
- Kim, S. A., J. Kim, M. K. Woo, C. S. Kwak, and M. S. Lee (2005) Antimutagenic and cytotoxic effects of ethanol extracts from five kinds of seaweeds. J. Korean Soc. Food Sci. Nutr. 34: 451-459. https://doi.org/10.3746/jkfn.2005.34.4.451
- Kwak, C. S., S. A. Kim, and M. S. Lee (2005) The correlation of antioxidative effects of 5 Korean common edible seaweeds and total polyphenol content. J. Korean Soc. Food Sci. Nutr. 34: 1143-1150. https://doi.org/10.3746/jkfn.2005.34.8.1143
- Lee, H. O., D. S. Kim, J. R. Do, and Y. S. Ko (1999) Angiotensin-I converting enzyme inhibitory activity of algae. J. Korean Fish. Soc. 32: 427-431.
- Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.
- Lee, Y. P. (2008) Seaweed in Jeju, Academic Press.
- Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Song, B. B., S. K. Kim, and G. T. Jeong (2011) Enzymatic hydrolysis of marine algae Hizikia fusiforme. KSBB J. 26: 347-351. https://doi.org/10.7841/ksbbj.2011.26.4.347
- The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) Top value added chemicals from biomass, volume I - Results of screening for poten- tial candidates from sugars and synthesis gas. http://www.osti.gov/bridge (2004).
- Yeon, J. H., H. B. Seo, S. H. Oh, W. S. Choi, D. H. Kang, H. Y. Lee, and K. H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.
Cited by
- Bioethanol Production from Macroalgal Biomass vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.976
- Malonic acid를 이용한 전처리가 꼬시레기의 가수분해에 미치는 영향 vol.56, pp.4, 2015, https://doi.org/10.9713/kcer.2018.56.4.542
- Production of reducing sugar in Gracilaria verrucosa using physio-chemical pretreatment and subsequent enzymatic hydrolysis vol.60, pp.None, 2021, https://doi.org/10.1016/j.algal.2021.102531