• Title/Summary/Keyword: Environmental tests

Search Result 4,259, Processing Time 0.033 seconds

Experimental und Numerical Sensitivity Analyses on Push Pull Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.312-316
    • /
    • 2004
  • Single-well tracer tests, especially push pull tracer tests, are more effective to estimate hydraulic parameters and microbial metabolic activities in terms of duration and cost compared to multi-well tracer tests. However, there are some drawbacks in accuracy, complicated data analysis and uniqueness. These shortages are thought to be derived from the applied conditions which affect mass recovery curve and breakthrough curve. Factors such as extraction rate, resting period, hydraulic conductivity and hydraulic gradient are considered as the major factors determining the mass recovery rate and shape of the breakthrough curve. The results of the sensitivity analysis are summarized as follows: 1) the significant change in concentration of breakthrough curve is obtained when the extraction rate increases. This effect would also be much higher if the hydraulic conductivity is lower; 2) the mass recovery rate decreases with the increase of resting time, and the difference of mass recovery rates for different resting times is inversely proportional to the hydraulic conductivity; 3) the sensitivity values decrease with time. The hydraulic conductivity affects not only the early period, but the later period of the breakthrough curves; 4) The influence of the hydraulic gradient on the breakthrough curves is greater at earlier stage than at later stage. The mass recovery rate is inversely proportional to the hydraulic gradient.

  • PDF

Experimental Study for Installation Damage Assessment of Geogrid (지오그리드의 시공중 손상 평가를 위한 실험적 연구)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • Geosynthetic reinforcements may be damaged during its installation in the filed. The installation damage mainly depends on two factors such as materials used and construction activities. This paper describes the results of a series of field tests, which are conducted to assess the installation damage of geogrid according to different maximum grain sizes of fills (40, 60, and 80 mm). These tests are done in three sites for twelve different kinds of geogrids. After field tests, the changes in tensile strength of the geogrids is determined from wide width tensile tests using both damaged and undamaged specimens. In the results of tests, tensile strength of the relatively flexible geogrids after field installation tests was decreased about from 20% to 40% according to the increment of the maximum grain size. On the other hand, for the relatively stiff geogrids, the loss of the tensile strength after site installation was examined below 5.2% independent of the maximum grain size of the soils. The results of this study show that the installation damage significantly depends on the stiffness of geogrid and is more obvious to a flexible geogrid and a fill material having higher maximum grain size.

Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju

  • Ban, Jae-Doo;Moon, Seong-Woo;Lee, Seong-Won;Lee, Joo-Gong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.451-462
    • /
    • 2017
  • Physical weathering caused by external forces and chemical weathering caused by the decomposition or alteration of constituent materials are the two factors that dominate the mechanical properties of rocks. In this study, a field investigation was undertaken to identify the physical and chemical weathering characteristics of the biotite granite and granitic weathered soils in Gyeongju, South Korea. Samples were collected according to their grade of weathering and subjected to modal analysis, XRD analysis, XRF analysis, physical property tests, particle size distribution tests, and slake durability tests. Modal and XRD analysis identified these rocks as biotite granite; secondary alteration minerals were not observed. Physical property tests and particle size distribution analyses indicate an average porosity of 41.28% and a sand content of > 90 wt.%. These values are somewhat higher than those of granites in general. The results of the slake durability test and XRF analyses show that the physical and chemical weathering indices of the samples vary with the degree of weathering.

Reliability Tests for BLDC Motors Used in Green-Cars (그린카 BLDC 모터의 신뢰성 시험)

  • Yoo, Ki-Hoon;Park, Boo-Hee;Kim, Ki-Tae;Kim, Gi-Young;Kim, Dal-Seok;Jang, Joong-Soon;Hahn, Chang-Su;Cho, Han-Sam
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.97-110
    • /
    • 2011
  • BLDC(Brushless Direct Current) motor is a powerful device to control the automotive electronic components used in green cars such as HEV/EVs(Hybrid Electric Vehicle and Electric Vehicle). This study is to propose reliability test items derived through pretesting, suitability analysis abd classification of previous BLDC motor tests. For environmental stress tests are determined by analysing environmental conditions and relevant failure mechanisms induced by climate loads, mechanical loads, chemical loads, etc. ATL and HALT are also considered for life testing and screening.

Numerical Analyses of O-Cell Load Test on Pile (양방향말뚝재하시험의 수치해석)

  • Joo, Yong-Sun;Kim, Nak-Kyoung;Kim, Woong-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.748-753
    • /
    • 2008
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurisation causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. Bi-directional load tests using O-cell are now becoming common practice around the world, particularly where the loads to be applied are high or where it is not convenient to perform top-down loading tests. In the study, calculate ultimate capacity of bi-directional load test using FEM and beam on elasto-plastic foundation theory.

  • PDF

Determination of slip modulus of cold-formed steel composite members sheathed with plywood structural panels

  • Karki, Dheeraj;Far, Harry;Al-hunity, Suleiman
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.511-522
    • /
    • 2022
  • An experimental investigation to study the behaviour of connections between cold-formed steel (CFS) joist and plywood structural panel is presented in this paper. Material testing on CFS and plywood was carried out to assess their mechanical properties and behaviour. Push-out tests were conducted to determine the slip modulus and failure modes of three different shear connection types. The employed shear connectors in the study were; size 14 (6mm diameter) self-drilling screw, M12 coach screw, and M12 nut and bolt. The effective bending stiffness of composite cold-formed steel and plywood T-beam assembly is calculated based on the slip modulus values computed from push-out tests. The effective bending stiffness was increased by 25.5%, 18% and 30.2% for self-drilling screw, coach screw, nut and bolt, respectively, over the stiffness of cold-formed steel joist alone. This finding suggests the potential to enhance the structural performance of composite cold-formed steel and timber flooring system by mobilisation of composite action present between timber sheathing and CFS joist.

Single Well Push-Pull Test를 이용한 TCE 오염 지하수의 In-Situ Bioremediation 타당성조사

  • Kim, Yeong;Istok, Jonnathan;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.188-191
    • /
    • 2003
  • Sing]e-well-push-pull tests were developed for use in assessing the feasibility of in-situ aerobic cometabolism of chlorinated aliphatic hydrocarbons (CAHs). The series includes Transport tests, Biostimulation tests, and Activity tests. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide or chloride (conservative tracers), propane (growth substrate), ethylene, propylene (CAH surrogates), dissolved oxygen (electron acceptor) and nitrate (a minor nutrient). Tests were conducted at an experimental well field of Oregon State University. At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the dissolved gases and nitrate prior to biostimulation. Biostimulation tests were conducted to stimulate propane-utilizing activity of indigenous microorganisms and consisted of sequential injections of site groundwater containing dissolved propane and oxygen. Biostimulation was detected by the increase in rates of propane and oxygen utilization after each injection. Activity tests were conducted to quantify rates of substrate utilization and to confirm that CAH-transforming activity had been stimulated. In particular, the transformation of injected CAH surrogates ethylene and propylene to the cometabolic byproducts ethylene oxide and propylene oxide provided evidence that activity of the monooxygenase enzyme system, responsible for aerobic cometabolic transformations of CAHs had been stimulated. Estimated zero-order transformation rates decreased in the order propane > ethylene > propylene. The series of push-pu3l tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ aerobic cometabolism of CAHs.

  • PDF

The Injection Characteristics and Environmental Effects for Grouting Materials (지반주입재 종류별 주입특성 및 환경적 유해성에 관한 연구)

  • Chun, Byung-Sik;Lee, Jae-Young;Ha, Kwang-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.37-49
    • /
    • 2002
  • In this study, it is performed that mix design of grouting materials which high strength, durability and environmentally safe materials for 2 types of suspension, solution grouting. The laboratory model tests such as permeation, solidification tests are performed to find injection effects by the injection pressure, soil condition. And environmental effects of the grouting materials is analyzed through the heavy-metal leaching tests. From the results, micro cement of suspension grouting superior permeation, solidification injection to Portland cement, and phosphoric acid and sodium hydrogen carbonate in solution grouting were similar to micro cement of suspension grouting. When compare to strength of grouted soils, micro cement of suspension grouting showed high compression strength to Portland cement. While, solution grouting showed very low compression strength comparing suspension grouting. Also, in the heavy-metal leaching tests results were satisfied with the environmental regulation standard for raw grouting materials and grouted soil by 7, 14, 28days curing.

  • PDF

Compressive Strength and Environmental Investigation for Beneficial Use of Dredged Sediments (준설퇴적물 유효활용을 위한 압축강도 및 환경성 평가)

  • Yoon, Gil Lim;Bae, Yoon Shin;Yoon, Yeo Won;Kim, Suk Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.119-131
    • /
    • 2010
  • In this study, beneficial use of ocean contaminated sediments were investigated by laboratory and environmental tests, and their prototypes were released. Dredged material from Ulsan port is used for making cement treated samples and lightweight foamed samples, and various engineering tests were performed to identify the compressibility and stress-strain behaviors. Environmental tests were also performed for the beneficial uses. The values of Cu are a little higher than the suggested standard possible for reusing dredged material and equal to the suggested standard alarming for reusing dredged material, which shows environmental harmfulness for the reuse of construction material. In addition, particle size distribution, compaction test, Atterberg limit tests, specific gravity test, and unit weight test were performed to investigate the use of landfill cover materials. The shear strengths of cement treated soils were found to be enough for reclamation works.