• Title/Summary/Keyword: Environmental tests

Search Result 4,300, Processing Time 0.027 seconds

Efficiency of Geothermal Energy Generation Assessed from Measurements of Deep Depth Geothermal Conductivity (고심도 지중열전도도에 의한 지열 응용의 효율성)

  • Cho, Heuy-Nam;Lee, Dal-Heui;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2012
  • The objectives of this study were to test geothermal conductivity (k), water velocity, water quantity, and pipe pressure from a ground heat exchanger in the field, and then to analyze these data in relation to the effectiveness and economical efficiency for application of geothermal energy. After installation of the apparatus required for field tests, geothermal conductivity values were obtained from three different cases (second, third, and fourth). The k values of the second case (506 m depth) and third case (151 m depth) are approximately 2.9 and 2.8, respectively. The k value of the fourth case (506 m depth, double pipe) is 2.5, which is similar to the second and third cases. This result indicates that hole depth is a critical factor for geothermal applications. Analysis of the field data (k, water velocity, water quantity, and pipe pressure) reveals that a single geothermal system at 506 m depth is more economically efficient than three geothermal systems at depths intervals of 151 m. Although it is more expensive to install a geothermal system at 506 m depth than at 151 m depth, test results showed that the geothermal system of the fourth case (506 m, double pipe) is more economically efficient than the system at 151 m depth. Considering the optional cost of maintenance, which is a non-operational expense, the geothermal system of the fourth case is economically efficient. Large cities and areas with high land prices should make greater use of geothermal energy.

The maximum limiting characteristic method-based land suitability assessment for peaches (Prunus persica) and grapes (Vitis vinifera L.) using rasterized data of soil and climate on agricultural land in South Korea (토양 및 기후정보 통합 최대저해인자법에 의한 복숭아와 포도의 적지 평가)

  • Kim, Hojung;Koo, Kyung-Ah;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.286-296
    • /
    • 2019
  • Land suitability assessments have been a crucial issue for enhancing productivity in agriculture and conserving agricultural lands. Based on soil and climate information, land suitability assessment for peaches (Prunus persica) and grapes (Vitis vinifera L.) were conducted using the maximum limiting characteristic method (MLCM) in South Korea. In peaches, S1 (highly suitable) exists on 2.21% of the land, S2 (moderately suitable) on 19.20%, N1 (currently not suitable) on 12.07%, and N2 (permanently not suitable) on the remaining 66.52%. In grapes, 3.65% of the land is classified as S1, 17.98% as S2, 11.85% as N1 and 66.52% as N2. In both fruit trees, the results acquired from soil and climatic information were similar to those from soil information alone. The data also suggest that the grades by soil information were relatively low over the land. With the assumption that the more suitable area a province has, the more will be cultivated for the fruit trees, we compared the percentages of area for peach and grape farming per province with the results by MLCM, and suggested that some provinces with a small percentage of farm can be encouraged to plant more in suitable areas as dictated by MLCM for the species. In the near future, we plan to use an advanced method such as analytic hierarchy process (AHP) to conduct similar tests, in which having reference data of yields or benefits per farm can efficiently increase the accuracy of the measurements.

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

A Model Test on Soil Arching and Loosening Zone Developed in Grounds Composed of Granular Soil Particles (입상체 흙입자로 구성된 지반 속에 발생하는 지반아칭과 이완영역에 관한 모형실험)

  • Hong, Won-Pyo;Kim, Hyun-Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.13-24
    • /
    • 2014
  • A series of trapdoor model tests was systematically performed in order to investigate soil arching. The mobilized soil arching was clearly observed by change of the vertical earth pressure loaded on trapdoor of soil container box. A slow decent of the loading plate at the trapdoor results in loosening zone over the trapdoor and the stress in this loosening zone was transferred to the stationary zone in the vicinity of the trapdoor. In particular, it was observed that the vertical earth pressure rapidly decreased in the loosening zone and increased in the stationary zone at the trapdoor. Both the maximum decreasing rate of the vertical earth pressure in the loosening zone and the increasing rate of the vertical earth pressure in the stationary zone were not influenced by the ground density, but affected by the size of the trapdoor. The loosening zone could be defined by the elliptical configuration, in which the major axis was twice as long as the height of the loosening zone at the center of trapdoor and the minor axis was the same as the width of trapdoor. The height of loosening zone at the center of trapdoor was one and a half times as long as the width of trapdoor loading plate.

Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan (부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구)

  • Jeong, Sueng-Won;Ji, Sang-Woo;Yim, Gil-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.5-15
    • /
    • 2014
  • Abandoned mine deposits are exposed to various physico-chemical geo-environmental hazards and disasters, such as acid mine drainage, water contamination, erosion, and landslides. This paper presents the ring shear characteristics of waste materials. The ring shear box with a rotatable O-ring was used in this study. Three tests were performed: (i) Shear stress-time relationship for given normal stress and shear speed, (ii) shear stress as a function of shear speed, and (iii) shear stress as a function of normal stress. For a given normal stress (50 kPa) and speed (0.1 mm/sec), the materials tested exhibit a strain softening behavior, regardless of drainage condition. The peak and residual shear stresses were determined for each normal stress and shear speed. The shear stress was measured when shear speed is equal to 0.01, 0.1, 1, 10, 50, 100 mm/sec or when normal stress is equal to 20, 40, 60, 80, 100, 150 kPa. From the test results, we found that the shear stress increases with increasing shear speed. The shear stress also increases with increasing normal stress. However, different types of shearing mode were observed in drained and undrained conditions. Under drained condition, particle crushing was observed from the shearing zone to the bottom of lower ring. Under undrained condition, particle crushing was observed only at the shearing zone, which has approximately 1 cm thick. It means that a significant high shear speed under undrained condition can result in increased landslide hazard.

Reinforcement and Arching Effect of Geogrid-reinforced and Pile-supported Embankments (지오그리드와 말뚝으로 보강된 성토지반의 보강 및 아칭효과 연구)

  • Oh Young-In;Shin Eun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.5-16
    • /
    • 2005
  • Geosynthetic-reinforced and pile-supported embankments have been increasingly used and researched around the world. The inclusion of one or multiple geosynthetic reinforcements over the pile is intended to enhance the efficiency of load transfer from soft ground to piles, to reduce total and differential settlement and increase global or local stability. In this paper, the reinforcement effectiveness and arching effect of the geogrid-reinforced and pile-supported embankments have been studied in terms of field model tests and numerical analysis with varying the space between piles and reinforcement. 2-dimensional numerical analysis has been conducted using the FLAC (Fast Lagrangian Analysis of Continua) program. And load transfer mechanisms between soil-piles-geogrid were investigated. The mechanisms of load transfer can be considered as a combination of embankment soil arching, tension geogrid, and stress concentration due to the stiffness difference between pile and soft ground. Based on the field model test and numerical analysis results, it was found that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also. at the D/b=3 (D: spacing of pile cap, b: diameter of pile), the total settlement is reduced by about $40\%$ compared to that without reinforcement. For $D/b{\ge}6$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

Effects on Individually Tailored Teaching According to Types of Under-achievement in Science (과학 학습 부진 유형에 따른 맞춤형 학습 지도의 효과)

  • Kim, Sang-Yun;Lee, Kyoeng-Ran;Back, Nam-Gwon;Park, Jong-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.5
    • /
    • pp.907-917
    • /
    • 2015
  • Response to Intervention (RTI), which is focused on the gap between pre-interventions and post-interventions, provides an effective intervention program. This study takes under-achievement factors into consideration to determine the overall characteristics of underachievers. The under-achievement factors include cognitive learning factors, affective factors, and environmental factors. This study conducted curriculum-based assessments, achievement tests, and assessments on attitudes toward science and science learning motivation to verify the effects of individually tailored teaching according to the types of under-achievement in science. The experimental group was composed of six students in fourth grade, and the comparison group had 23 students. The findings of the study were as follows. First, the performance and progress of underachievers in the first-stage showed little progress and did not reach grade-level performance. Second, the underachievers in the second-stage greatly improved. In particular, the average of eight sessions in the second-step demonstrated performance beyond that of the regular child. Third, individually tailored teaching according to the types of under-achievement in science positively affected attitudes toward science and science learning motivation. This study will contribute to the improvement of the underachiever by applying individually tailored teaching according to the types of under-achievement in science.

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Isolation of marine algicidal bacteria from surface seawater and sediment samples associated with harmful algal blooms in Korea (유해조류번성 주변의 해수와 침전물에서 살조균의 분리)

  • Kristyanto, Sylvia;Kim, Jaisoo
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.40-48
    • /
    • 2016
  • This study mainly focused on isolation of marine algicidal bacteria associated with phytoplankton blooms and characterization of algicidal activity against harmful algae. Harmful algal blooms (HABs) found naturally in surface waters have caused many environmental problems worldwide. In this study, forty bacterial strains that have capability of inhibiting harmful algal growth were isolated from Masan Bay, Jinhae Bay, Dol Island, Jangmok Bay, and the Tongyeong Sea, Republic of Korea. The bacteria were screened furthermore for the characteristics on algicidal activities against Cochlodinium polykrikoides, Chattonella marina, Skeletonema costatum, Heterosigma akashiwo, Heterocapsa triquetra, Prorocentrum minimum, and Scrippsiella trochoidea. As a result, the algicidal bacteria that were screened from double over layer agar and microscopic counts tests belonged to genera Pseudomonas, Vibrio, Bacillus, Pseudoalteromonas, Ruegeria, Joostella, Marinomonas, Stakelama, Porphyrobacter, and Albirhodobacter. One of the most important HAB species is Co. polykrikoides and the strongest algicidal activity against the dinoflagellate was 94.00% after 6 h treatment with 10% bacterial culture filtrate. In this study, Marinomonas sp. M Jin 1-8, Stakelama sp. ZB Yeonmyeong 1-11 & 1-13, Porphyrobacter sp. M Yeonmyeong 2-22, and Albirhodobacter sp. 6-R Jin 6-1 were found to be as new genera of bacteria having anti-algal activity. These results suggest that these bacteria might play an important role in controlling phytoplankton blooms.