• Title/Summary/Keyword: Environmental fate

Search Result 280, Processing Time 0.032 seconds

Development of Korean Chemical Ranking and Scoring System (CRS-Korea) and its Application to Prioritizing National Toxic Chemicals (화학물질 우선순위 선정 기법(CRS-Korea)의 개발과 적용)

  • Park Hoa-Sung;Kim Ye-shin;Lee Dong Soo;Shin Yong-seung;Choi Seung-pil;Park Seong-eun;Kim Myung-hyun;Yang Ji-yeon;Shin Dong-chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.109-121
    • /
    • 2005
  • A chemical ranking and scoring (CRS-Korea) system was developed and proposed to use as the first step to prioritize the toxic chemicals for the purpose of monitoring and detailed risk assessment that might follow as necessary. The CRS-Korea system takes a basic concept of risk assessment (both human health risk and ecological risk) in that risk score is determined by the product of toxicity score and exposure score. Included in the toxicity category are acute toxicity, chronic/sub -chronic toxicity, carcinogenicity, and other toxicity. The exposure category consists of quantity released to the environment, bioconcentration, and persistence. A consistent scheme and a comprehensive chemical data base are offered in the CRS-Korea system to calculate a score for the each component in the two categories by using specific physicochemical, fate, and toxic properties and the quantity of the chemical used. The toxicity score is obtained by adding up all the individual scores for the components in the toxicity category. The exposure score is determined by multiplication of the score of the quantity released with the sum of persistent score and bioconcentration score. Equal weight is given to the toxicity score and the exposure score. As the CRS-Korea system was applied to identify 50 national priority chemicals, it was found that significant data gap exists on toxicity and fate properties and that the uncertainty associated with estimating the quantify released to the environment is notably high. The proposed CRS system is only a screening tool in the first step toward the priority setting and should be used with expert judgement and other considerations necessary.

Nanowastes treatment in environmental media

  • Kim, Younghun
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.15.1-15.7
    • /
    • 2014
  • Objectives This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. Methods The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. Results The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. Conclusions Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.

Research Trends of Ecotoxicity of Nanoparticles in Soil Environment

  • Lee, Woo-Mi;Kim, Shin-Woong;Kwak, Jin-Il;Nam, Sun-Hwa;Shin, Yu-Jin;An, Youn-Joo
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.253-259
    • /
    • 2010
  • We are consistently being exposed to nanomaterials in direct and/or indirect route as they are used in almost all the sectors in our life. Nations across the worlds are now trying to put global regulation policy on nanomaterials. Sometimes, they are reported to be more toxic than the corresponding ion and micromaterials. Therefore, safety research of nanoparticles has huge implications on a national economics. In this study, we evaluated and analyzed the research trend of ecotoxicity of nanoparticles in soil environment. Test species include terrestrial plants, earthworms, and soil nematode. Soil enzyme activities were also discussed. We found that the results of nanotoxicity studies were affected by many factors such as physicochemical properties, size, dispersion method and test medium of nanoparticle, which should be considered when conducting toxicity researches. In particular, more researches on the effect of physicochemical properties and fate of nanoparticles on toxicity effect should be conducted consistently.

The Role of Organic Matter and Black Carbon on the Cycling of Persistent Organic Pollutants (POPs) (POPs의 순환에 미치는 유기물 및 black carbon의 역할)

  • Nam Jae-Jak;Hong Suk-Young;Kim Kye-Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.255-266
    • /
    • 2006
  • Soil organic matter (OM) is well documented for its capacity to retain persistent organic pollutants (POPs) and thus is important in dictating the environmental partitioning of POPs between media such as air, water, and soil. Black carbon (BC) is a small component of OM and exhibitt a 10$\sim$100 times greater sorption capacity of POPs than humified OM. Furthermore, due to the inherent long environmental life time of BC, a result of its resistance to physical and biological degradation, POPs can continue to accumulate in BC over a long period of time. The unique properties of BC have been of particular interest over the last 30 years and have resulted in broad research being conducted into its effects of POP cycling in atmospheric, oceanographic and soil matrices. The results of such studies have proved valuable In providing new research initiatives into the role of BC in the cycling of hydrophobic organic compounds (HOCs) as well as giving further insight into the long range atmospheric transport (LRAT) potential and subsequent risk assessment criteria for persistent organic pollutants (POPs). In this report, we introduce a novel study examining the relationships between BC and OM with respect to their POP sorption capacity and discuss the role of BC in influencing the environmental regulation of organic pollutants.

Nature and Fate of Dioxin in Soil Environment

  • Park, Moon-Hyun;Kim, Hye-Jin;Lee, Min-Gi;Park, Sook-Hyun;Lee, Yoon-Chul;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.657-661
    • /
    • 2011
  • The chlorinated dioxins and furans have attracted considerable scientific and public concern because of their environmental persistence and super-toxicity through the foodchain. Recent dioxin scandals in several military bases have also contributed to a higher awareness on the side of food consumers as well as foodwaste combustion. However, there is continuing uncertainty over the relative importance of different sources of dioxins and furans to the soil environment. In difference to those awareness there is a main influence of potential soil contamination on the dioxin contents in groundwater. It is, therefore, important to provide a sound scientific framework and basis by which to evaluate the significance of the presence of dioxin in soils. Consequently, we have to identify the characteristics and nature of dioxin released into the soil environment, especially in agricultural aspect.

Fate of Genetically Engineered 2,4-D-Degrading Microorganisms in Natural Soils and Waters

  • Hong, Seok-Myeong;Lee, Yin-Won;Kim, Chi-Kyung;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.320-326
    • /
    • 1996
  • To analyze the effects of host versus plasmid on survival of 2, 4-degrading bacteria in environmental samples, strains Pseudomonas cepacia/pJP4, Alcaligenes JMP228/pJP4, P. cepacia/p712, and Alcaligenes JMP228/p712 were separately inoculated into samples of field soil, paddy soil, lake water, and river water, and then the changes of their populations were measured. The strains used contained a 2, 4-D degradative plasmid, either pJP4 conferring fast-growing property to the host or p712 conferring slow-growing property, and were resistant to antibiotics such that the inoculated strains could be enumerated against the indigenous microbial populations. In sterile environmental samples, these strains were stably maintained at the levels used for inoculation, except in sterile paddy soil where Alcaligenes JMP228 strains died drapidly. In natural soil samples for four strains declined steadily with time, but in naturla water samples their polulations fell rapidly at the early phase and then remained almost constant. When the environmentla samples were treated with 2, 4-D, P. cepacia/pJP4 and P. cepacia/p712 maintained significant numbers, while Alcaligenes JMP228/pJP4 and Alcaligenes JMP228/p712 declined significantly in most of the samples. The results indicated that the survivability of genetically modified microorganisms could vary depending on the environments and that their abundance in the environments under s2, 4-D selection was markedly influenced by the nature of the 2, 4-D degradative plasmid as well as type of the host strain.

  • PDF

Effects of Suspended Solids, pH and Salinity on the Chemical Fate of Oxolinic Acid in the Aquatic Environment (해양환경에서 부유물질, 염분 및 pH의 옥소린산 화학적 거동에 미치는 영향)

  • Yoon Duk-Hyun;Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.99-106
    • /
    • 2006
  • The fate of chemical pollutants in the aquatic environment is generally considered to be strongly influenced by environmental factors such as pH, salinity and electrostatic charges on the surface of particles ai well as by the characteristic of chemicals. Oxolinic acid was measured by chemical analysis using HPLC to determine the effect of salinity, pH and suspended solids on chemical binding and by bioassay for measuring bioactivity. The higher contentration of suspended solids in the medium, the lower concentration of oxolinic and was detected in measurements from by both HPLC and biosssay analysis. This indicates particle may have a stronger binding or absorption effect on oxolinic acid. Bioassay analysis showed weaker bioacivity at higher salinity and pH 7.0, but this result of bioassay analysis was different from the result of HPLC.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Acute Toxicity Test of Agricultural Chemicals to Water Fleas (물벼룩을 이용한 농약의 급성 독성에 관한 연구)

  • Lee, Chan-Won;Ryu, Jae-Young;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • There are concerns that chemical residues could harm the consumer on the environment, although 50 to 80% of the crops would be destroyed by pests and others without agrochemicals. Environmental fate and ecotoxicity studies are usually carried out to assess the impact on the human and the environment. A comparision of the Daphnia magnia and Simocephalus mixtus toxicity was performed to study the relative sensitivities and discrimination abilities to agriculture chemicals. The species of Simocephalus mixtus was more sensitive to agriculture chemicals than Daphnia magnia. Simocephalus mixtus was approved to be a water flea in determining insecticide and pesticide toxicity by heart-beat rate in a consistency and repeatability. The order of acute toxicity to water flea Daphnia magnia for ecotoxicity test was carbaryl>benomyl>amtirole with both Daphnia magnia and Simocephalus mixtus. The heartbeat pattern after the exposure to agrochemicals was different from that of exposure to heavy metals. Agrochemical leathal concentration test with heartbeat rate measurement was found to be more appropriate than inhibition concentration test with respect to toxicological endpoint.

Estimating Predicted Environmental Concentration of Veterinary Antibiotics in Manure and Soil

  • Kwon, A-Young;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.100-104
    • /
    • 2015
  • Adverse effect of veterinary antibiotics (VAs) released into environment has been issued recently and concerns about analysis and management for VAs in the environment were increased. Main objective of this research was to calculate predicted environmental concentration (PEC) of the VAs in soil based on avaiable statistical data and result of previous study such as consumption rate and physiological properties of VAs. Total of 5 VAs, Chlortetracycline (CTC), Oxytetracycline (OTC), Sulfadimethoxine (SDX), Sulfamethazine (SMT), and Tylosin (TYL) were examined. Result showed that calculated PEC value in manure and soil was ordered as SMT > TYL > SDX > CTC > OTC. Range of calculated value for manure and soil was 0.50-67.04 and $0.48-64.45mg\;kg^{-1}$ respectively. Comparing to measured concentration of VAs in manure and soil, lower concentration of VAs in manure and soil was evaluated due to fate and degradation of VAs in manure and soil. Overall, evaluated simple modeling for calculating PEC of VAs in manure and soil can be adapted for preliminary screening purpose in environmental risk assessment and more refined modeling is necessary to examine detailed assessment of VAs in manure and soil.