• Title/Summary/Keyword: Environmental control systems

Search Result 1,224, Processing Time 0.027 seconds

Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions

  • Lu, Qin;Yi, Jing;Yang, Dianhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.110-119
    • /
    • 2016
  • High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 highthroughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

Study on the Analysis and the Application of State-of-the-Art Daylighting Design Cases - Based on the Case Studies of LEED(Leadership in Energy and Environmental Design) Multi-Family housing - (최신 자연채광 디자인 사례들 분석 및 그 적용에 관한 연구 - 미국 LEED 인증 공동주택 사례분석을 바탕으로 -)

  • Yoon, Hea-Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.265-273
    • /
    • 2013
  • The purpose of this study is to analyze the state-of-the-art daylighting design among LEED(Leadership in Energy and Environmental Design) multi-family housing cases and to explore the feasibilities for their applications in domestic housing design. Occupants in multi-family houses are reported to consume more electricity power than those in single houses. That may imply the problems of daylighting design in domestic housing design for multi-family houses have better insulation system and less windows and outside walls than single houses. Therefore two systems, daylight delivery system and daylight control system, are scrutinized for daylighting design with LEED cases. The findings show when windows as a daylight delivery system are combined with overhangs, fins, louvers, fenestration materials, speciality fenestration, or interior controls as a daylight control system, the outcome goes with more energy savings and better facade design. Beside those, lightshelves as a daylight delivery system seem to have potentials in domestic multi-family houses with deep plans and less outside walls. Daylighting designs in domestic multi-family houses need to pursue available options more to achieve the integration of energy and aesthetics values.

Latest greenhouse product industry in Japan and newest computational techniques for aerodynamics in greenhouses

  • Lee, In-Bok
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.3-16
    • /
    • 2000
  • Protection agriculture is the essential choice for human to increase the efficiency of limited crop production area under harsh and changeable weather boundary conditions, extend growing season, maximize the crop yields, and then increase the sustainable income of the grower. The investment costs far greenhouses as well as labor and energy costs are much higher than for conventional plant production systems, so these can only be balanced by better crop yields, higher labor productivity, and higher energy efficiency. (omitted)

  • PDF

Monitoring of Geothermal Systems Wells and Surrounding Area using Molecular Biological Methods for Microbial Species (분자생물학적 방법을 이용한 지열시스템 관정 및 주변지역 미생물종 모니터링)

  • Ahn, Chang-Min;Han, Ji-Sun;Kim, Chang-Gyun;Park, Yu-Chul;Mok, Jong-Koo;Jang, Bum-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.23-32
    • /
    • 2012
  • This study was conducted to monitor microbial species dynamics within the aquifer due to long term operation of geothermal heat pump system. The species were identified by molecular biological methods of 16S rDNA. Groundwater sample was collected from both open (S region) and closed geothermal recovery system (J region) along with the control. J measured and control as well as S measured found Ralstonia pickettii as dominant species at year 2010. In contrast, Rhodoferax ferrireducens was dominantly observed for the control of S. In 2011, Sediminibacterium sp. was universely identified as the dominant species regardless of the monitoring places and type of sample, i.e., measured or control. The difference in the dynamics between the measured and the control was not critically observed, but annual variation was more strikingly found. It reveals that possible environmental changes (e.g. ORP and DO) due to the operation of geothermal heat recovery system in aquifer could be more exceedingly preceded to differentiate annual variation of microbial species rather than positional differences.

A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency (옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구)

  • Kim, Tae Han;Park, Sung Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.

Enzyme Based Biosensors for Detection of Environmental Pollutants-A Review

  • Nigam, Vinod Kumar;Shukla, Pratyoosh
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1773-1781
    • /
    • 2015
  • Environmental security is one of the major concerns for the safety of living organisms from a number of harmful pollutants in the atmosphere. Different initiatives, legislative actions, as well as scientific and social concerns have been discussed and adopted to control and regulate the threats of environmental pollution, but it still remains a worldwide challenge. Therefore, there is a need for developing certain sensitive, rapid, and selective techniques that can detect and screen the pollutants for effective bioremediation processes. In this perspective, isolated enzymes or biological systems producing enzymes, as whole cells or in immobilized state, can be used as a source for detection, quantification, and degradation or transformation of pollutants to non-polluting compounds to restore the ecological balance. Biosensors are ideal for the detection and measurement of environmental pollution in a reliable, specific, and sensitive way. In this review, the current status of different types of microbial biosensors and mechanisms of detection of various environmental toxicants are discussed.

Systematic Review on Management of Livestock wastes for Improving Water Quality (수질개선을 위한 축산계 오염물질 관리방안에 대한 고찰)

  • Ahn, Ki Hong;Ryu, Hong Deok;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.576-582
    • /
    • 2015
  • In recently, the Korea government is concerning on non-point source pollution management to improve water quality. The objective of this paper is to investigate the improvement measurement for management of livestock wastes. As a result, we find that the National Pollution Source Survey is necessary to establish the unified database system with the Korea Statistics(KOSAT) in order to minimize the difference between relevant data. The investigation for environmental impact of livestock manure should be supported the designation of control areas and establishment of the technical guidelines including target material, monitoring site, standard method, etc. In addition, it should be followed by appropriate nutrient recycling and proper fertilizer usage based on social consultation and cost-benefit analysis.

A Learning-based Visual Inspection System for Part Verification in a Panorama Sunroof Assembly Line using the SVM Algorithm (SVM 학습 알고리즘을 이용한 자동차 썬루프의 부품 유무 비전검사 시스템)

  • Kim, Giseok;Lee, Saac;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1099-1104
    • /
    • 2013
  • This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.

Development Trends of Life Support System for the Manned Space Exploration (유인 우주탐사용 생명유지시스템 개발 동향)

  • Lee, Jongwon;Kim, Younkyu;Lee, Joohee
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.85-103
    • /
    • 2021
  • Environmental Control & Life Support System (ECLSS) technology is essential for humans to live safely in space other than on Earth and celestial bodies (ex, Moon, Mars etc.) in our solar system. Life support systems generally consist of Air Management System (AMS), Water Recovery System (WRS), and Waste Management System (WMS), and it can enable humans to breathe and live in enclosed dwellings in outer space. First, this paper described the development trends of life support systems that have been developed under the leadership of NASA. In addition, we introduced the current development status of life support system in operation on the International Space Station (ISS) and prospected the development trends in Korea.

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF