• Title/Summary/Keyword: Environmental control systems

Search Result 1,224, Processing Time 0.032 seconds

Development of Environmental Control Systems for Windowless Pig-housing (I) - Assessment of Control Performance - (무창돈사의 환경제어 시스템 개발 (I) - 제어성능의 평가 -)

  • 장홍희;장동일;임영일
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.415-424
    • /
    • 1999
  • This study was conducted to assess performances of the developed environmental control systems under various seasons of Korea. In all trials for the environmental control systems, the manure pit ventilation system in the windowless pig-housing with partly slatted floor was used. Consequently, under all seasons of Korea, the complex environmental control systems could comfortably maintain the indoor temperature (14.8~27.2$^{\circ}C$) , concentrations of noxious gases (CO2 gas : 631~1,874ppm, NH3 gas : 0.3~3.2ppm), air velocity (0.11~0.23m/s), air movement, and so on. Therefore, the performances of the complex environmental control systems were evaluated as proper as the intended.

  • PDF

Comparative analysis on environment control systems for glasshouses and plastic houses (유리온실과 플라스틱 온실의 환경조절시스템 비교분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho;Seo, Dong-Uk;Yu, In-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • In order to set up the basic environmental control systems which the new concept greenhouses have to equip, greenhouse characteristics, environmental management and control systems in domestic glasshouses and plastic houses were investigated and analyzed comparatively. Survey results on the width, length, eaves height, and the number of spans etc. showed that glasshouses were bigger than plastic houses significantly. New concept greenhouses claim to be plastic houses, but it will be reasonable to follow the specifications of the glasshouse. Specifications to be applied to new concept greenhouses were proposed as follows; hot water heating systems, aluminum screens as the thermal curtain, evaporative cooling systems, roof vents on the ridge, circulation fans, $CO_2$ enrichment, hydroponic systems, and automatic irrigation control systems. Environmental measurement systems for the indoor and outdoor temperature, humidity, light, wind speed and indoor $CO_2$ concentration have to be fully equipped. The automatic control system has to be as a complex environmental control system, not a single item control system. Also, for stable dissemination, domestically producing complete greenhouse control system should be made as soon as possible.

On-line tuning of controllers with state observer using a real-time CAD of control systems

  • Koga, Masanobu;Toriumi, Hiroaki;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.346-349
    • /
    • 1996
  • In this paper development of a CAD of control systems is introduced which enables us to do not only analysis of control systems, design of controllers but also real-time implementation of controllers. By utilizing this software, the control engineer is able to repeat the procedure of modification of controllers and experiments without recompile to attain better performance. The software also offers the facility to update the parameters of controllers without stopping real-time control, which helps on-line tuning of controllers. If some parameters of the controller is changed on-line, the control input may change discontinuously. It has serious effect on the control systems. A method for on-line tuning of state feedback controller with state observer is proposed and verified through the experiment with an inverted pendulum.

  • PDF

State-of-The-Art Factory-Style Plant Production Systems

  • Takakura, Tadashi
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.1-10
    • /
    • 1996
  • Factory-style plant production systems of various kinds are the final goal of greenhouse production systems. These systems facilitate planning for constant productivity per unit area and labor under various outside weather conditions, although energy consumption is intensive. Physical environmental control in combination with biological control can replace the use of agricultural chemicals such as insecticides, herbicides and hormones to regulate plants. In this way, closed systems which do not use such agricultural chemicals are ideal for environmental conservation for the future. Nutrient components in plants can be regulafied by physical environmental control including nutrient solution control in hydroponics. Therefore, specific contents of nutrients for particular plants can be listed on the container and be used as the basis of customer choice in the future. Plant production systems can be classified into three types based on the type of lighting: natural lighting, supplemental lighting and completely artificial lighting (Plant Factory). The amount of energy consumption increases in this order, although the degree of weather effects is in the reverse order. In the addition to lighting, factory-style plant production systems consist of mechanized and automated systems for transplanting, environmental control, hydroponics, transporting within the facility, and harvesting. Space farming and development of pharmaceutical in bio-reactors are other applications of these types of plant production systems. Various kinds of state-of-art factory-style plant production systems are discussed in the present paper. These systems are, in general, rather sophisticated and mechaized, and energy consumption is intensive. Factory-style plant production is the final goal of greenhouse production systems and the possibilities for the future are infinte but not clear.

  • PDF

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications

  • Jung, H.J.;Spencer, B.F. Jr.;Ni, Y.Q.;Lee, I.W.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.493-526
    • /
    • 2004
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since this unique semiactive device was first introduced to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of dynamic models of MR fluid dampers for describing their complex dynamic behavior and control algorithms considering the characteristics of MR fluid dampers. This extensive review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

A CONSTRUCTION METHOD OF MULTIPLE CONTROL SYSTEMS USING PARTIAL KNOWLEDGE UPON SYSTEM DYNAMICS

  • Yoshisara, Ikuo;Indaba, Masaaki;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.73-78
    • /
    • 1999
  • This paper presents an effective construction method of adaptive multiple control systems utilizing some knowledge upon the plants. The adaptive multiple control system operates plants un-der widely changing environmental conditions. The adaptive multiple control system is composed of a family of candidate controllers together with a supervisor. The system does not require any identification schemes of environmental conditions. Monitoring outputs of the plant, the supervisor switches from one candidate controller to another, The basic ideas of adaptation are as follows: (1)each candidate controller is prepared for each environmental condition in advance; (2)the supervise. applies a sequence of speculative controls to the plant with candidate controllers just after the start of control or just after the detection of a change in the environmental condition. Each candidate controller can keep the system stable during one-step period of the speculative control and the most appropriate candidate controller for the environmental condition to which the system is exposed can be selected before the last trial of speculative control step comes to an end. We proposed a construction method of adaptive multiple control system without any knowledge of plant dynamics and applied the method to a cart-pole balancing problem and a vehicle anti skid braking system. In real applications, as we can often easily obtain a piece of knowledge upon plant dynamics beforehand, we intend to extend the method such that multiple control systems can be efficiently designed using the knowledge. We apply the new idea to the cart-pole balancing problem with variable length of the pole. The simulation experiments lead us to the conclusion that the new attempt can reduce the manpower to design the candidate controllers for adaptive multiple control systems.

  • PDF

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

Development of Environmental Control Systems for Windowless Pig-housing (II) - Growth Performance of Weaned Piglets and Growing Pigs - (무창돈사의 환경제어 시스템 개발 (II) - 자돈과 육성돈의 사양성적 -)

  • 장동일;장홍희;임영일;박창식;이봉덕;이형석
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.425-430
    • /
    • 1999
  • Complex environmental control systems were developed, which control properly the pig's environment in windowless pig-housing based on the thermoregulatory behaviors of pigs and concentrations of noxious gases (CO2 and NH3). The this study was conducted to assess the performance of complex environmental control systems by raising weaned piglets and growing pigs under different seasonal conditions. Average daily gain of pigs in the experimental pig-housing was slightly higher than that of pigs in the conventional pig-housing. Average daily gain was not significantly different in winter and spring(P>0.05), but was significantly different in summer(P<0.05). Feed conversion rate of pigs in the experimental pig-housing was smaller than that of pigs in the conventional pig-housing. Feed conversion rate was not significantly different in environment for weaned piglets and growing pigs resulted in the improved daily gain, feed conversion rate, and carcass quality of the finishing pigs. These results showed that the performance of the complex environmental control systems in windowless pig-housing was excellent for weaned piglets and growing pigs.

  • PDF

Design of Environment Control and Automated Management Systems for Animal Production : A Review (축산을 위한 환경제어 및 자동화 사양관리 시스템 설게에 관한 문헌 연구)

  • Chang, Dong-Il;Chang, Hong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.21-38
    • /
    • 1995
  • The objective of this study was to review and analyze the application technologies of electronics and microprocessor for environment control and automated management systems of livestock production of the advanced countries, and to select the appropriate and applicable technologies for our systems among the analyzed. In this study, the environment control systems were analyzed mainly on the poultry production systems and the automated management systems on swine and dairy production systems. According to the results, the advanced technologies reviewed and analyzed could be applicable for designing our animal production systems, if those were modified and remodeled for our situation.

  • PDF