• Title/Summary/Keyword: Environmental Technology

Search Result 19,658, Processing Time 0.046 seconds

Effect of Temperature on Survival of Salmonella enterica and Staphylococcus aureus (퇴비에서 온도조건에 따른 Salmonella enterica와 Staphylococcus aureus의 내열성 변화)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Jang, Mee-Na;Lee, Dong-Hwan;Choi, Jae-Hyuk;Lee, Sun-Young;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.555-559
    • /
    • 2012
  • Manures contain a variety of pathogenic microorganisms that pose a risk to human or animal. On-farm contaminations through contaminated manure were considered likely sources of the pathogen for several outbreak. Pathogenic microorganisms may survive in low numbers during the composting process and subsequently regrow to high levels under favorable conditions. The objective of this study was to investigate effect of temperature on survival of Salmonella enterica and Staphylococcus aureus in livestock manure compost. Commercial livestock manure compost (manure 60%, sawdust 40%) was inoculated with S. enterica and S. aureus. Compost was incubated at four different temperatures (10, 25, 35, and $55^{\circ}C$) for 20 weeks. Samples were taken every week during incubation depending on the given conditions. S. enterica persisted for up to 1 day in livestock manure compost at $55^{\circ}C$, over 140 days at $10^{\circ}C$, 140 days at $25^{\circ}C$, and 70 days at $35^{\circ}C$, respectively. S. aureus persisted for up to 1 day in livestock manure compost at $55^{\circ}C$ and 90 days at $10^{\circ}C$, 70 days at $25^{\circ}C$, and 40 days at $35^{\circ}C$, respectively. The results indicate that S. enterica and S. aureus persisted longer under low temperature condition. S. enterica survived longer than S. aureus at three different temperatures (10, 25, and $35^{\circ}C$). This study will provide useful and practical guidelines to applicators of soil in deciding appropriate handling and time frames for land application of livestock manure compost for sustainable agriculture. Results from these studies provide useful information in identifying manure handling practices to reduce the risk of S. enterica and S. aureus transmission to fresh produce.

Estimated EC by the Total Amount of Equivalent Ion and Ion Balance Model (등가 이온 총량에 따른 EC 추정과 이온 균형 모형)

  • Soh, Jae-Woo;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.694-699
    • /
    • 2012
  • To examine the EC model in a culture medium, basic culture medium of Rush (2005) and EC model of Robinson and Strokes (1959) were applied analyzing the equivalence ion total amount, the EC variable of cation and anion. Following the experiential translation by Steiner (1980), 130 optimized domestic and foreign culture media for crop growth were utilized, and estimated EC model was also demonstrated. Results from basic culture medium of Rush (2005) suggests an estimated EC by equivalence ion total amount and high reliable regressive model with 0.96 y = 1.33x - 0.23 of 0.96 as value $R^2$. It was found out that the change in concentration of positive ion and anion did not differ significantly with the increase and decrease of EC, however, there occurred a slight variable range. The change brings about a bigger anion influence than the previously reported positive ion, seemingly like those based on nitride ion and sulfur ion. The above EC estimated models confirmed that with optimized 130 domestic and foreign culture media for crop growth, the value derived will be as follows: $R^2$ = 0.98 with y = 1.23x - 0.02. In addition, the contour analysis of positive ion and anion for EC, with popularly known concentration range of EC $1.5-2.5dS{\cdot}m^{-1}$ reveals an equivalent of more than $11meq{\cdot}L^{-1}$ for positive ion and $15meq{\cdot}L^{-1}$ for anion. On the other hand, the left bottom, low concentration $1.5dS{\cdot}m^{-1}$ and the right above, high concentration $2.5dS{\cdot}m^{-1}$, for both positive ion and anion existed differently in a proper culture medium concentration. This study adapted variables of both positive ion and anion of EC simultaneously, unlike in the previous culture medium by ion ratio in mutual ratio of Steiner (1980), and offers an EC model that can estimate levels or positive ion and anion in proper concentration, EC $1.5-2.5dS{\cdot}m^{-1}$, with distributed features of ions.

Wilted Symptom in Watermelon Plant under Ventilation Systems (환기처리에 의한 수박의 시듦증 발생 기작)

  • Cho, Ill-Hwan;Ann, Joong-Hoon;Lee, Woo-Moon;Moon, Ji-Hye;Lee, Joo-Hyun;Choi, Byung-Soon;Son, Seon-Hye;Choi, Eun-Young;Lee, Sang-Gyu;Woo, Young-Hoe
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.529-534
    • /
    • 2010
  • Occurrence of wilted symptom in watermelon plant ($Citrullus$ $lanatus$ L.) is known to be caused by physiological disorder. The symptom results in the loss of fruit production and thus the economical loss of watermelon growers. The incidence of symptom is often found from the middle of March to the end of May in the major watermelon crop production areas of Korea (i.e. Uiryeong, Gyeongnam (lat $37^{\circ}$56'64"N, long $126^{\circ}$99'97"E)). Despite of extensive information about the physiological disorder, little study has been conducted to understand a relationship between the wilted symptom and accompanying environment factors (e.g. temperature). This study aimed to investigate effects of environmental conditions amended by a forced-ventilation system on physiological characteristics of watermelon and incidence of the wilted symptom. Watermelon plants were grown from January to May, 2009 with either the forced-or natural-ventilation treatment in a greenhouse located in the Uiryeong. In the result, the forced-ventilation treatment decreased the air, leaf and root-zone temperature approximately $4.5^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively, compared to the natural-ventilation. The fruit growth rate was maximized twice during the entire growing period. The higher rate of fruit growth was observed under the natural-ventilation than the forced one. Maximization of the fruit growth rate (approximately 430 g per day) was first observed by 12 days after fruiting under the natural-ventilation treatment, while the second one (approximately 350 g per day) was observed by 24 days after fruiting. The wilted symptom started occurring by 22 days after fruiting under the natural-ventilation, whereas no incidence of the symptom was found under the forced-ventilation treatment. Interestingly, the forced-ventilation lowered the fruit growth rate (approximately 320 g per day) compared to the natural one. Maximization of the fruit growth rate under the forced-ventilation was found at 4 days later than that under the natural one. This result coincided with a slower plant growth under the forced-ventilation treatment. These results suggest that the forced-ventilation slows down extension growth of fruit and plant, which may be associated with lowering leaf temperature and saturation deficit. We suggest the hypothesis that the forced-ventilation may alleviate stress of the wilted symptom by avoiding extreme water evaporation from leaves due to high temperature and thus by reducing competition between leaves and fruits for water. More direct and detailed investigations are needed to confirm the effect of the forced ventilation.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression (LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측)

  • Kim, Hyun Il;Han, Kun Yeun;Lee, Jae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.273-283
    • /
    • 2020
  • Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

Effective Management of Invasive Nutria (Myocastor coypus) in the UK and the USA (영국과 미국에서 침입성 뉴트리아 (Myocastor coypus)의 효과적 관리)

  • Kil, Jihyon;Lee, Do-hun;Kim, Young-chae
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • It is the better to take preventative measures against the natural intrusion in advance from invasive alien species that reduce biodiversity and cause economic loss to humans. If the prevention of intrusion and spread fails, we need to make active control and eradication. This study aims to introduce nutria (Myocastor coypus) control cases performed in the United Kingdom and the United States and to provide information for the contribution of nutria management measure improvements. The nutria eradication campaign in the United Kingdom was developed as a long-term plan based on sufficient understanding on the management target and objective and suitable support. Sufficient information on nutria was accumulated and the management strategy was flexibly modified according to the changes in management that were proactively reflected in the field. Regarding the eradication project at Chesapeake Bay in the United States, based on long-term ecological information, more advanced capture technology than in the United Kingdom were introduced and the eradication plan, strategy and implementation were configured by analyzing the strengths and weaknesses of the eradication campaign in the United Kingdom. The successful cases in the United Kingdom and the United State provide an information on how to improv the nutria management measure. For the eradication of nutria, it is necessary to reach a consensus between stakeholders and to form a consultative group between related organizations for periodic communication. Opinions on the field must be actively accepted in the consultation process for strategy and policy decision, and the eradication plan needs to be developed based on a management index. The eradication plan is required to be managed, evaluated and adjusted in a systematic way. Scientific management must be introduced and the management performance must be evaluated objectively so that a practical plan can be flexibly adjusted. It is also required to secure a long-term budget support and a stable organization and to input a concentrated budget at the proper period when there is high efficiency of eradication.

Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009 (이른 여름 동중국해 대륙사면의 해양환경과 소형 식물플랑크톤 군집의 연직분포 특성)

  • Yoon, Yang Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.151-162
    • /
    • 2013
  • Studies of the distribution of micro-phytoplankton community and chlorophyll a concentration have focused on the vertical profiles of marine environmental factors such as water temperature, salinity, sigma-t, light intensity, and dissolved oxygen in the continental slope on the east parts of East China Sea in the early summer of 2009. Water temperature showed a gradual reduction according to the depth. While the salinity was low in the surface layer showing a mixed down to the relatively subsurface layer, it was increased with an increase in the depth at the middle and bottom layers showing a maximum value at 150~200 m followed by a decreasing aspect afterwards, although the change was not large. The change of sigma-t was governed by the water temperature, and gradually increased in the surface layer with an increase in the depth, showing a value higher than in the surface layer by about 3 $kg/m^3$ at the bottom layer. Although the intensity of light was exponential reduced in the surface layer, the compensation depth was located at the depth of about 80m. The vertical profiles of chlorophyll a concentration was governed by the intensity rather than the changes in water temperature or salinity, exhibiting a maximum value at the compensation depth corresponding to 1% in the surface light intensity. The micro-phytoplankton communities consisted of 56 genera 103 species showing a relatively variety, while the standing crop was also changed to 112.0~470.0 cells/L in the pelagic environment, showing a maximum chlorophyll a concentration. Although a variety of dominant species appear at low dominance without dominant species appearing with a right-wing point in the phytoplankton communities, the silicoflagellate, Otactis otonaris at the station A and the dominance of 26% due to Leptocylindrus mediterraneus at the station C have been judged to be unusual. For community analysis of infinitesimal creatures such as phytoplankton of oligotrophic waters through the present study, ecology studies through vertical sample collection agreeing with the results of continuous observation such as identification of vertical distribution in a marine environment or of maximum chlorophyll layers have been considered rather than a survey method with intervals of a given depth such as surface, subsurface, middle and bottom layers.

Comparative Analysis on the Perceptions for Food Additives Between Elementary School Teachers and Nutrition Teachers (식품첨가물에 대한 초등교사와 영양교사의 인식 비교)

  • Kim, Jeong-Weon;Lee, Eun-Ju
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.74-84
    • /
    • 2016
  • Literacy on food additives of elementary school teachers (ET) and nutrition teachers (NT) could be influential factor on safe dietary education for school children. Therefore, the perceptions and information needs on food additives were surveyed from 351 elementary school teachers and nutrition teachers in metropolitan area of Korea, and the basic data for the promotion of risk communication on food additives among them were obtained. Compared to ET who consider 'taste' (39.1%) as the most important factor while purchasing food, NT considered 'safety' (68.1%) first (p < 0.001). Among the food labelling items, the level of understanding on food additives was the lowest both in ET (3.53) and NT (4.17), and NT showed better levels of understanding overall on food labels. Both ET and NT regarded hazardous factors of food as environmental pollutants, foodborne pathogens, and food additives in order, and tended to select 'no additives' or 'no artificial color' products while purchasing processed food. Although NT answered that they know all food additives had been passed the evaluation of safety and effectiveness tests (100%) and have standards of use (81.9%), majority of them (87.5%) believed the consumption of food additives are harmful on human health. ET (75.2%) also regarded food additives as dangerous materials. Above results suggested the necessity of proper and enough risk communication for both ET and NT. Both ET and NT wanted to have information on the safety or hazard of food additives. Most preferred media to get the information on food additives was TV (3.80) among ET and lecture (3.65) among NT. ET and NT trusted hospital, research institution/universities or the personnels working in these institutions as the provider of information on food additives. The result that the trust levels of ET and NT on government were relative low suggested the weakness of risk communication in Korean government. Although ET and NT answered that they do not trust mass media, their behaviors were affected by them such as reading food labels in ET (39.4%) and reducing the consumption of food additives in NT (50%). They also indicated mass media's problem of sensitive approach on food additives and asked the urgent reaction of government by providing sound information through experts on food additives. Above results revealed that ET and NT have different perceptions and information needs on food additives, therefore, proper risk communication should be provided for them to serve as dietary educators for elementary school children.

Vertical Shoot Growth of Korean Lawngrass (Zoysia japonica Steud.) Influenced by Trinexapac-ethyl, Amidochlor, and Mefluidide (Trinexapac-ethyl, Amidochlor 및 Mefluidide가 들잔디 직립생장에 미치는 효과)

  • Kim, Kyoung-Nam;Kim, Yong-Seon
    • Horticultural Science & Technology
    • /
    • v.17 no.5
    • /
    • pp.572-577
    • /
    • 1999
  • Research was initiated to evaluate plant growth regulator effects on the vertical shoot growth of Korean lawngrass and to determine desirable growth regulator and its rate. The experiments were conducted twice at different sites in 1995. All the tested growth regulators inhibited the growth, but the inhibition period was variable among the product in Experiments I and II. During the first week after treatment, there was approximately 10 to 20% growth reduction in most of the treated plots. In the amidochlor-treated plots, growth suppression was effective for 3 to 4 weeks at low to medium rates ($0.60mL{\cdot}m^{-2}$). A Type II growth regulator, trinexapac-ethyl exceeding the medium rate of $0.08mL{\cdot}m^{-2}$ consistently tended to suppress vertical shoot growth for 8 weeks, being above 35% reduction in both experiments. In the plots applied with mefluidide, growth suppression appeared with foliar discoloration 3 or 4 days earlier than the other growth regulators and continued to work till the 8 weeks after treatment. Suppression intensity on vertical shoot growth increased with time after treatment up to a certain period of time, depending on growth regulators. Generally, the higher the application rate, the greater the suppression intensity. Seasonal variation of activity and effectiveness of growth regulators was observed, resulting in lower suppression intensity in July than in June. It is expected to reduce mowing requirements by 30 to up to 60% for a certain period with a specific growth regulator. In low to medium maintenance of Korean lawngrass turf, a long-term suppression may be more effectively accomplished with trinexapac-ethyl rather than mefluidide and amidochlor in terms of vertical shoot growth inhibition. Therefore, turf managers will need to select proper growth regulator and determine optimum rate of application for turfgrass management, based on a defined period of mowing reduction.

  • PDF