• Title/Summary/Keyword: Environmental Sustainability Performance

Search Result 155, Processing Time 0.063 seconds

District Energy Use Patterns and Potential Savings in the Built Environment: Case Study of Two Districts in Seoul, South Korea

  • Lee, Im Hack;Ahn, Yong Han;Park, Jinsoo;Kim, Shin Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • Energy efficiency is vital to improve energy security, environmental and social sustainability, and economic performance. Improved energy efficiency also mitigates climate change by lowering greenhouse gas (GHG) emissions. Buildings are the single largest industrial consumer of energy and are therefore key to understanding and analyzing energy consumption patterns and the opportunities for saving energy at the district level in urban environments. This study focused on two representative boroughs in the major metropolitan area of Seoul, South Korea as a case study: Gandong-gu, a typical residential district, and Jung-gu, a typical commercial district. The sources of the energy supplied to the boroughs were determined and consumption patterns in different industry sectors in Seoul used to identify current patterns of energy consumption. The study analyzed the energy consumption patterns for five different building categories and four different sectors in the building using a bottom-up energy modeling approach. Electricity and gas consumption patterns were recorded for different building categories and monthly ambient temperatures in the two boroughs. Finally, a logarithmic equation was developed to describe the correlation between commercial activity and cooling energy intensity in Jung-gu, the commercial district. Based on these results, recommendations are made regarding the current energy consumption patterns at the district level and government energy policies are suggested to reduce energy consumption and, hence, greenhouse gas emissions, in both commercial and residential buildings.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Selection Method of Eco-friendly Finishing Materials Considering Cost Efficiency for the Aged Housing Remodeling Projects (노후 공동주택 리모델링의 경제성을 고려한 친환경 실내 마감재료 선정 방안)

  • Kim, Ki-Hyun;Kim, Kyung-Rai;Hwang, Young-Gyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.84-91
    • /
    • 2008
  • "Eco-friendly construction" is an emerging issue in the building industry. Main purpose of the eco-friendly construction is to sustain the health and environment of building residents and to minimize the harmful effect on their environment. Apartment residents have great concern on eco-product, since many cases are reported that Sick Building Syndrome is caused by toxic substance from building materials. Environmental performance is to meet through using the highest grade eco-friendly materials. However, generally eco-friendly materials are more expensive than normal materials, Therefore, using eco-friendly materials at public housing project is limited to economical aspect. The purpose of this paper is development of eco-friendly material selection model considered cost efficiency. The selection of Eco-friendly finishing materials and their methods are constructed to consider environmental performance level and cost index compositively. Development of eco-friendly material selection method is economic and reasonable one when public housing is constructed.

Selection Method of Eco-friendly Finishing Materials Considering Cost Efficiency for the Aged Housing Remodeling Projects (노후 공동주택 리모델링의 경제성을 고려한 친환경 실내 마감재료 선정방안)

  • Kim, Ki-Hyun;Kim, Kyung-Rai;Han, Ju-Yeoun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.953-956
    • /
    • 2007
  • "Eco-friendly construction"is an emerging issue in the building industry. Main purpose of the eco-friendly construction is to sustain the health and environment of building residents and to minimize the harmful effect on their environment. Apartment residents have great concern on eco-product, since many cases are reported that Sick Building Syndrome is caused by toxic substance from building materials. Environmental performance is to meet through using the highest grade eco-friendly materials. However, generally eco-friendly materials are more expensive than normal materials. Therefore using eco-friendly materials at public housing project is limited to economical aspect. The purpose of this paper is development of eco-friendly material selection model considered cost efficiency. The selection of Eco-friendly finishing materials and their methods are constructed to consider environmental performance level and cost index compositively. Development of eco-friendly material selection method is economic and reasonable one when public housing is constructed.

  • PDF

Development of Korean Green Business/IT Strategies Based on Priority Analysis (한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구)

  • Kim, Jae-Kyeong;Choi, Ju-Choel;Choi, Il-Young
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

An Evaluating of Daylighting Performance by Venetian Blind Shapes Type Change - Centre on Radiance Program (베네치안 블라인드 슬랫각도 형태변화에 따른 주광성능에 관한 연구 - Radiance Program 중심으로)

  • Lim, Tae Sub;Park, Jong Myung;Lim, Jung Hee;Kim, Byung Seon
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Current Architectural Facade Designs have been trending to increased glass areas resulting in increasing impact on interior lighting and daylighting. In regards to indoor environmental quality, the increase in window space has a large impact on the daylighting received which ultimately impacts the liveability of a space. Especially when considering seasons, in the summer, excessive daylighting can result in glare as well as put an increased load in conditioning the air space further reducing energy efficiency. As a result, in order to improve the sustainability performance of a building, it is important to limit the natural lighting exposure to properly meet the needs and conditions of the building occupants. One of the most representative features to limit excessive sunlight exposure, is to incorporate operable blind systems. To this end, this research has been based on simulations performance through the Radiance Program. Radiance is capable of analyzing performance of daylight and impact of sunlight. Through analysis of different slat angles and blind shapes, impact and minimization of energy usage was evaluated. Furthermore, seasonal analysis was performed in order to understand the effects of seasonal climate factors. Ultimately this research provides an analysis of operable blinds optimization and effects of blind shape, control factors and angle of shading.

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

Precision feeding and precision nutrition: a paradigm shift in broiler feed formulation?

  • Moss, Amy F.;Chrystal, Peter V.;Cadogan, David J.;Wilkinson, Stuart J.;Crowley, Tamsyn M.;Choct, Mingan
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.354-362
    • /
    • 2021
  • Broiler chickens grow rapidly, and their nutrient requirements change daily. However, broilers are fed three to five diet phases, meaning nutrients are under or oversupplied throughout production. Increasing diet phases improves production efficiency as there is less time in the production cycle that nutrients are in under or over-supply. Nevertheless, the process of administering four or more diets is costly and often impractical. New technologies are now available to blend feed to match the daily nutrient requirements of broilers. Thus, the aim of this review is to evaluate previous studies measuring the impact of increasing feed phases on nutrient utilisation and growth performance, and review recent studies taking this concept to the extreme; precision nutrition - feeding a new diet for each day of the production cycle. This review will also discuss how modern precision feeding technologies have been utilised and the potential that new technologies may bring to the poultry industry. The development of a precision nutrition regime which targets daily requirements by blending dietary components on farm is anticipated to improve the efficiency of production, reduce production cost and therefore improve sustainability of the industry. There is also potential for precision feeding technology along with precision nutrition strategies to deliver a plethora of other management and economic benefits. These include increased fluidity to cope with sudden environmental or market changes, and the ability to alter diets on a farm by farm level in a large, integrated operation. Thus, the future possibilities and practical implications for such technologies to generate a paradigm shift in feed formulation within the poultry industry to meet the rising demand for animal protein is also discussed.

Compressive strength prediction of limestone filler concrete using artificial neural networks

  • Ayat, Hocine;Kellouche, Yasmina;Ghrici, Mohamed;Boukhatem, Bakhta
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The use of optimum content of supplementary cementing materials (SCMs) such as limestone filler (LF) to blend with Portland cement has been resulted in many environmental and technical advantages, such as increase in physical properties, enhancement of sustainability in concrete industry and reducing $CO_2$ emission are well known. Artificial neural networks (ANNs) have been already applied in civil engineering to solve a wide variety of problems such as the prediction of concrete compressive strength. The feed forward back propagation (FFBP) algorithm and Tan-sigmoid transfer function were used for the ANNs training in this study. The training, testing and validation of data during the backpropagation training process yielded good correlations exceeding 97%. A parametric study was conducted to study the sensitivity of the developed model to certain essential parameters affecting the compressive strength of concrete. The effects and benefits of limestone filler on hardened properties of the concrete such as compressive strength were well established endorsing previous results in the literature. The results of this study revealed that the proposed ANNs model showed a high performance as a feasible and highly efficient tool for simulating the LF concrete compressive strength prediction.

Factors Affecting Human Capital and Innovative Entrepreneurial Capabilities of Tour Operators: Evidence from Andaman Coast, Thailand

  • HAREEBIN, Yuttachai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.359-368
    • /
    • 2020
  • This research seeks to explain factors and relationship models of entrepreneurs capable of building service innovations in Andaman coast with the ultimate aim to ignite sufficient development of regional tourism, increase working potentials, and provide a guideline for tour operations. Initially, document examination and discussions with five experts were conducted to build in-depth interview questions. 19 entrepreneurs were interviewed to examine factors involved and we consulted later with the five experts and six successful entrepreneurs in the regions, as well as with the representatives of the Association of Thai Tour Operators and Tourism Authority of Thailand (TAT) of Phuket, Krabi, and Trang. The results were analyzed according to the theory of resource-based and innovative entrepreneurs. The factors obtained were generated from systematic causes: Nature of Entrepreneurships and Organizational capabilities, the mediator variables of Service Innovation Capability; and Organizational Performance (non-finance). Moreover, the external factors needing to be adjusted regarding the environmental changes were described. The tour operators are suggested to build networking to increase tourism potential with sustainability by providing the entrepreneurs opportunities to be involved in tourism development, accessing the knowledge, technology and innovations resulting in sustainable tourism, quality livelihood, and sustainable ecological management of communities.