• Title/Summary/Keyword: Environmental Simulation

검색결과 3,805건 처리시간 0.032초

중규모 수치모델을 이용한 김해지역 고농도 대기오염 사례 분석 (Analysis on High Concentration Air Pollution Cases in Gimhae Region Using the WRF Numerical Model)

  • 정우식;이보람;박종길;도우곤
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.1029-1041
    • /
    • 2013
  • In this study, eight episode days of high-concentration $PM_{10}$ occurrences in the Gimhae region between 2006 and 2011 were analyzed. Most of them appeared in winter and the highest concentration was observed around 12 LST. Furthermore, the wind direction, wind velocity, and temperature elements were compared with observed values to verify the WRF numerical simulation results used in this study, and they simulated well in accordance with the trend of the observed values. The wind was generally weak in the high-concentration episode days that were chosen through surface weather chart and the numerical simulation results for wind field, and the air pollutants were congested due to the effects of the resulting local winds, thereby causing a high concentration of air pollutants. Furthermore, the HYSPLIT model was performed with the WRF numerical simulation results as input data. As a result, they originated from China and flowed into Gimhae in all eight days, and the lowest concentration appeared on the days when recirculation occurred.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

비료제조공장 인근 지역의 담배특이니트로사민 환경 노출 (Environmental Exposure to Tobacco-specific Nitrosamines in an Area Near a Fertilizer Plant)

  • 하재나;윤미라;장준영;고도현;신호상;김수향;이철우;이보은;김정수
    • 한국환경보건학회지
    • /
    • 제46권4호
    • /
    • pp.398-409
    • /
    • 2020
  • Objectives: This study aimed to evaluate environmental exposure to tobacco-specific nitrosamines (TSNAs) by conducting an analysis of the concentration of TSNAs in deposited dust collected from a fertilizer plant and the surrounding village, a simulation of high-temperature drying of tobacco waste, and CALPUFF modeling. Methods: The raw materials of the products, deposited dust (inside and outside the plant and residential area), soil, and wastewater were sampled and the TSNA concentrations were analyzed by LC-MS/MS. As the plant was closed down before the investigation, simulation tests were conducted to confirm the substances discharged during high-temperature (300℃) drying of tobacco waste. CALPUFF modeling was performed to identify the area of influence due to exposure to TSNAs. Results: TSNAs were detected in organic fertilizers estimated to contain tobacco waste, deposited dust, and soil collected from inside and outside the plant. N'-nitrosonornicotine (NNN), 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), and N'-nitrosoanatabine (NAT) components were detected in five of 15 deposited dust samples collected from the residential area around the plant, while TSNAs were not detected in the five sampling points in the control area. Also, the simulation test for the high temperature drying of tobacco waste found emissions of TSNAs. The CALPUFF modeling results showed that the survey area was likely to be included in the area of influence of TSNA emissions from the plant. Conclusions: It is estimated that harmful tobacco ingredients such as TSNAs were dispersed in nearby areas due to the illegal use of tobacco waste as a raw material to produce organic fertilizers at the plant. These findings assume that the residents have been exposed to TSNAs and suggest that the need for the establishment of measures to manage environmental health.

단일포집자충돌(SCC) 모델을 이용한 이산화탄소기포의 입자분리특성과 부상효율 평가 (Evaluation of Flotation Efficiency and Particle Separation Characteristics of Carbon Dioxide Bubbles using Collision Efficiency Model)

  • 이준용;김성진;유영훈;정팔진;권영호;박양균;곽동희
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.129-136
    • /
    • 2012
  • In this century, scientists realized that carbon dioxide gas in the atmosphere cause a greenhouse effect which affects the planet's temperature. Therefore lots of attempts have carried out to decrease the discharge of carbon dioxide gas in the field. The dissolved carbon dioxide flotation (DCF) process was developed as an alternative of DAF process to decrease the discharge and reuse of carbon dioxide as well as to save energy consumption. To investigate the particle separation characteristics and the flotation efficiency of carbon dioxide, SCC model was employed in the DCF process which has been applied extensively for the evaluation and simulation in the DAF process. The simulation results by the SCC model revealed the predicted curve of flotation efficiency became decreased gradually over the optimal pressure range of saturator about 1.6 atm in accordance with the experiment results of the DCF pilot plant and the size distribution and the bubble volume concentration of $CO_{2}$ bubbles depending on the operation pressure of saturator. The findings through the simulation results led to the conclusion that there was no significant difference between $CO_{2}$ bubbles and air bubbles, affecting on the practical flotation efficiency, in terms of the initial collision and attachment efficiency.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

댐 하류 하천에서 하상변동 모델을 이용한 어류 물리서식처 변화 모의 (Simulation of Change in Physical Habitat of Fish Using the Mobile Bed Model in a Downstream River of Dam)

  • 김승기;최성욱
    • Ecology and Resilient Infrastructure
    • /
    • 제2권4호
    • /
    • pp.317-323
    • /
    • 2015
  • 본 연구는 장기하상변동 모의를 이용하여 댐 하류 하천에서의 하상변동이 어류 물리서식처에 미치는 영향에 대하여 연구하였다. 이를 위하여 흐름모형은 준정류 모형을 이용하였으며, 서식처 모형은 서식처 적합도 지수 (HSI) 모형을 이용하였다. 장기하상변동 모의를 위하여 Exner 방정식을 이용하였으며 하상재료 입도분포의 변화를 고려하였다. 내성천 영주댐 하류에서 모의결과 침식과 장갑화가 진행되었으며 이에 따라 피라미의 물리서식처가 변하게 되었다. 지형과 하상재료의 변화가 어류 물리서식처에 영향을 끼치는 것을 확인할 수 있다.

ECOTECT 시뮬레이션을 활용한 학교건축의 창호계획에 관한 연구 -기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로- (A Study on the Window Planning of School Building Using ECOTECT Simulation -By Dynamic Daylight Simulation Using Weather Data-)

  • 최우람;한석종;윤영일
    • KIEAE Journal
    • /
    • 제13권6호
    • /
    • pp.77-82
    • /
    • 2013
  • Light environment in the school building is one of the most important elements of the plan in order to improve student's ability to learn and the healthy growth. Thus, the window plan of the school building is a great addition to improve environmental-friendly performance through the daylight control. Daylight is highly beneficial for improving the indoor environmental quality and reducing building energy consumption, daylighting applications are scarcely considered, especially during the school building design process, because of lack of previous studies on the light environment of student and complex simulation process. Therefore, daylighting process were performed using ECOTECT, which has various advantage such as easy user interface and simple simulation processes. ECOTECT simulation were performed using weather data. As a result, ECOTECT simulation are performed for daylight autonomy and useful daylight illuminance. Using this data, Window planing is to propose and effective method in the early stages of design.

Time dependent numerical simulation of MFL coil sensor for metal damage detection

  • Azad, Ali;Lee, Jong-Jae;Kim, Namgyu
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.727-735
    • /
    • 2021
  • Recently, non-destructive health monitoring methods such as magnetic flux leakage (MFL) method, have become popular due to their advantages over destructive methods. Currently, numerical study on this field has been limited to simplified studies by only obtaining MFL instead of induced voltage inside coil sensor. In this study, it was proposed to perform a novel numerical simulation of MFL's coil sensor by considering vital parameters including specimen's motion with constant velocity and saturation status of specimen in time domain. A steel-rod specimen with two stepwise cross-sectional changes (i.e., 21% and 16%) was fabricated using low carbon steel. In order to evaluate the results of numerical simulation, an experimental test was also conducted using a magnetic probe, with same size specimen and test parameters, exclusively. According to comparative results of numerical simulation and experimental test, similar signal amplitude and signal pattern were observed. Thus, proposed numerical simulation method can be used as a reliable source to check efficiency of sensor probe when different size specimens with different defects should be inspected.

DEVELOPMENT OF ENERGY SIMULATION USING BIM (BUILDING INFORMATION MODELING)

  • Hyunjoo Kim;Kyle Anderson;Annette Stumpf
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.74-83
    • /
    • 2011
  • This paper recognized a need in the architecture, engineering, and construction industry for new programs and methods of producing reliable energy simulations using BIM (Building Information Modeling) technology. Current methods and programs for running energy simulations are not very timely, difficult to understand, and lack high interoperability between the BIM software and energy simulation software. It is necessary to improve on these drawbacks as design decision are often made without the aid of energy modeling leading to the design and construction of non-optimized buildings with respect to energy efficiency. The goal of this research project is to develop a new methodology to produce energy estimates from a BIM model in a more timely fashion and to improve interoperability between the simulation engine and BIM software. In the proposed methodology, the extracted information from a BIM model is compiled into an INP file and run in a popular energy simulation program, DOE-2, on an hourly basis for a desired time period. Case study showed that the application of this methodology could be used to expediently provide energy simulations while at the same time reproducing the BIM in a more readably three dimensional modeling program. With the aid of an easy to run and easily understood energy simulation methodology, designers will be able to make more energy conscious decisions during the design phase and as changes in design requirements arise.

  • PDF