DOI QR코드

DOI QR Code

Simulation of Change in Physical Habitat of Fish Using the Mobile Bed Model in a Downstream River of Dam

댐 하류 하천에서 하상변동 모델을 이용한 어류 물리서식처 변화 모의

  • Kim, Seung Ki (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Sung-Uk (Department of Civil and Environmental Engineering, Yonsei University)
  • 김승기 (연세대학교 토목환경공학과) ;
  • 최성욱 (연세대학교 토목환경공학과)
  • Received : 2015.12.02
  • Accepted : 2015.12.20
  • Published : 2015.12.30

Abstract

This study investigated the impact of the morphological change on a physical fish habitat in the downstream reach of a dam using long-term mobile bed simulation. The quasi-steady model was used for hydraulic simulation and the habitat suitability index model was applied for physical habitat simulation. For simulating long-term morphological change of the stream bed, The Exner equation was used. Sorting of bed material was also considered. The results of simulation showed that erosion and armoring process occurred in a reach downstream of the dam and change of physical habitat for Zacco platypus followed. These results indicate that channel morphology and substrate conditions effected the physical habitat for considering long-term investigation.

본 연구는 장기하상변동 모의를 이용하여 댐 하류 하천에서의 하상변동이 어류 물리서식처에 미치는 영향에 대하여 연구하였다. 이를 위하여 흐름모형은 준정류 모형을 이용하였으며, 서식처 모형은 서식처 적합도 지수 (HSI) 모형을 이용하였다. 장기하상변동 모의를 위하여 Exner 방정식을 이용하였으며 하상재료 입도분포의 변화를 고려하였다. 내성천 영주댐 하류에서 모의결과 침식과 장갑화가 진행되었으며 이에 따라 피라미의 물리서식처가 변하게 되었다. 지형과 하상재료의 변화가 어류 물리서식처에 영향을 끼치는 것을 확인할 수 있다.

Keywords

References

  1. Bovee, K.D. 1982. A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper No. 12, Fish and Wildlife Service, U.S. FWS/OBS-82/26, Fort Collins, CO, USA.
  2. Bowen, Z.H., Freeman, M.C., and Bovee, K.D. 1988. Evaluation of generalized habitat criteria for assessing impacts of altered flow regimes on warmwater fishes. Transactions of the American Fisheries Society 127: 455-468.
  3. Brandt, S.A. 2000. Classification of geomorphological effects downstream of dams. Catena 40: 375-401. https://doi.org/10.1016/S0341-8162(00)00093-X
  4. Hirano, M. 1971. River bed degradation with armoring. Proceedings of Japan Society of Civil Engineers 195: 55-65.
  5. Ji, U., Kim, J.S. and Lee, C.J. 2013. Flow resistance analysis for lower Naesung Stream considering grain and bedform roughness. Journal of Korea Water Resources Association 46: 1209-1220. (in Korean) https://doi.org/10.3741/JKWRA.2013.46.12.1209
  6. Kang, Y.H., Kim, S.K., Hong, G.B., and Kim, H.S. 2011. Change of fish fauna and community structure in the Naeseong Stream around the planned Yeongju Dam. Korean Journal of Limnology 44: 226-238. (in Korean).
  7. KICT. 2013. Analysis of Change in River Morphology and Vegetation Due to Artificial Structures. Korea Institute of Construction Technology, Ilsan, Korea. (in Korean)
  8. Kim, I.S. 1997. A Pictorial Book of Animals and Plants, Vol. 37. Ministry of Education, Gwacheon, Korea. (in Korean)
  9. Kondolf, G.M. 1997. PROFILE: hungry water: effects of dams and gravel mining on river channels. Environmental Management 21: 533-551. https://doi.org/10.1007/s002679900048
  10. Milhous, R.T., Updike, M.A. and Schneider, D.M. 1989. Physical Habitat Simulation System Reference Manual-Version II. Information Paper No. 26., U.S. Fish and Wildlife Service, FWS/OBS-89/16, Fort Collins, CO, USA.
  11. Sung, Y.D., Park, B.J., Joo, G.J. and Jung, K.S., 2005. The estimation of ecological flow recommendations for fish habitat. Journal of Korea Water Resources Association 38: 545-554. (in Korean). https://doi.org/10.3741/JKWRA.2005.38.7.545
  12. Valentin, S., Lauters, F., Sabaton, C., Breil, P. and Souchon, Y. 1996. Modelling temporal variations of physical habitat for brown trout (Salmo trutta) in hydropeaking conditions. Regulated Rivers:Research & Management 12: 317-330. https://doi.org/10.1002/(SICI)1099-1646(199603)12:2/3<317::AID-RRR398>3.0.CO;2-1
  13. Wu, W., Wang, S.S.Y. and Jia, Y. 2000. Nonuniform sediment transport in alluvial rivers. Journal of Hydraulic Research 38: 427-434. https://doi.org/10.1080/00221680009498296
  14. Yi, Y., Wang, Z. and Yang, Z. 2010a. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River. Journal of Hydrology 387: 283-291. https://doi.org/10.1016/j.jhydrol.2010.04.018
  15. Yi, Y., Wang, Z. and Yang, Z. 2010b. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecological Modelling 211: 864-875.

Cited by

  1. Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution vol.3, pp.2, 2016, https://doi.org/10.17820/eri.2016.3.2.134
  2. Development of Hydraulic Analysis and Assessment Models for the Restoration of Ecological Connectivity in Floodplains Isolated by Levees vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.307
  3. 내성천에서 영주댐 운영전 어류 군집구조의 특성 vol.4, pp.1, 2017, https://doi.org/10.17820/eri.2017.4.1.034
  4. 수리생태적 연결성 평가를 위한 격자기반 수리해석 모형 개발 vol.51, pp.5, 2015, https://doi.org/10.3741/jkwra.2018.51.5.461
  5. 영주댐 담수 이후 저서성 대형무척추동물 군집변화 vol.33, pp.5, 2015, https://doi.org/10.13047/kjee.2019.33.5.515