• Title/Summary/Keyword: Environmental Roughness

Search Result 379, Processing Time 0.025 seconds

Environmentally-Conscious Lubrication for Superfinishing

  • Malkin, Stephen;Lee, Jongchan;Masurkar, Sameer;Hickok, Evan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Cutting fluids used for superfinishing are usually mineral based oils With sulfur and chlorine additives. These cutting fluids are an environmental hazard and can adversely affect the health of personnel on the shop floor. The present investigation was undertaken to explore the possible alternative use of environmentally-conscious cutting fluids for superfinishing. Unlike mineral oils, these environmentally-conscious cutting fluids are biodegradable and non-hazardous. Experiments were conducted for testing an ester oil manufactured by Accu-Lube applied in miniscule amounts using the Minimum Quantity Lubrication (MQL) technique. A significant improvement in stock removal was found with the 6 stones tested. The specific energy values associated with the process were also significantly lower than those obtained previously with conventional straight oils and the water based synthetic fluid, indicative of better lubrication, while the surface roughness was comparable. These tests prove that MQL with ester oils can be a very effective environmentally-conscious alternative to conventional straight oils.

  • PDF

Dynamic analysis of wind-vehicle-bridge systems using mutually-affected aerodynamic parameters

  • Wang, Bin;Xu, You-Lin;Li, Yongle
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.191-211
    • /
    • 2015
  • Several frameworks for the dynamic analysis of wind-vehicle-bridge systems were presented in the past decade to study the safety or ride comfort of road vehicles as they pass through bridges under crosswinds. The wind loads on the vehicles were generally formed based on the aerodynamic parameters of the stationary vehicles on the ground, and the wind loads for the pure bridge decks without the effects of road vehicles. And very few studies were carried out to explore the dynamic effects of the aerodynamic interference between road vehicles and bridge decks, particularly for the moving road vehicles. In this study, the aerodynamic parameters for both the moving road vehicle and the deck considering the mutually-affected aerodynamic effects are formulized firstly. And the corresponding wind loads on the road vehicle-bridge system are obtained. Then a refined analytical framework of the WVB system incorporating the resultant wind loads, a driver model, and the road roughness in plane to fully consider the lateral motion of the road vehicle under crosswinds is proposed. It is shown that obvious lateral and yaw motions of the road vehicle occur. For the selected single road vehicle passing a long span bridge, slight effects are caused by the aerodynamic interference between the moving vehicle and deck on the dynamic responses of the system.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

Preparation and Characterization of Electrodeposited Cadmium and Lead thin Films from a Diluted Chloride Solution

  • Sulaymon, Abbas Hamid;Mohammed, Sawsan A.M.;Abbar, Ali Hussein
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.115-127
    • /
    • 2014
  • Cd-Pb thin films were electrodeposited from a diluted chloride solution using stainless steel rotating disc electrode. The linear sweep voltammograms of the single metallic ions show that electrodeposition of these ions was mass transfer control due to the plateau observed for different rotations at concentration (50 and 200 ppm). The voltammograms of binary system elucidate that electrodeposition process always start at cathodic potential located between the potential of individual metals. Currents transients measurements, anodic linear sweep voltammetry (ALSV) and atomic force microscopy (AFM) were used to characterize the electrocryatalization process and morphology of thin films. ALSV profiles show a differentiation for the dissolution process of individual metals and binary system. Two peaks of dissolution Cd-Pb film were observed for the binary system with different metal ion concentration ratios. The model of Scharifker and Hills was used to analyze the current transients and it revealed that Cd-Pb electrocrystalization processes at low concentration is governed by three-dimensional progressive nucleation controlled by diffusion, while at higher concentration starts as a progressive nucleation then switch to instantaneous nucleation process. AFM images reveal that Cd-Pb film electrodeposited at low concentration is more roughness than Cd-Pb film electrodeposited at high concentrated solution.

Mechanics of the slaking of shales

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-231
    • /
    • 2011
  • Waste fills resulting from coal mining should consist of large, free-draining sedimentary rocks fragments. The successful performance of these fills is related to the strength and durability of the individual rock fragments. When fills are made of shale fragments, some fragments will be durable and some will degrade into soil particles resulting from slaking and inter-particle point loads. The degraded material fills the voids between the intact fragments, and results in settlement. A laboratory program with point load and slake durability tests as well as thin section examination of sixty-eight shale samples from the Appalachian region of the United States revealed that pore micro-geometry has a major influence on degradation. Under saturated and unsaturated conditions, the shales absorb water, and the air in their pores is compressed, breaking the shales. This breakage was more pronounced in shales with smooth pore boundaries and having a diameter equal to or smaller than 0.060 mm. If the pore walls were rough, the air-pressure breaking mechanism was not effective. However, pore roughness (measured by the fractal dimension) had a detrimental effect on point load resistance. This study indicated that the optimum shales to resist both slaking as well as point loads are those that have pores with a fractal dimension equal to 1.425 and a diameter equal to or smaller than 0.06 mm.

Effect of Latex Particle Size, Base Paper Grammage and Coating Color Concentration on Printing Quality of Coated Paper (Latex 입경과 원지 평량 및 칼라농도가 도공지의 인쇄품질에 미치는 영향)

  • Lee, Y.K.;Yoo, S.J.;Cho, B.U.;Kim, Y.S.;Nam, B.K.;Choi, S.M.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • The effects of latex particle size, basis weight of base paper and coating color concentration on the printing quality of coated paper were investigated. Coating colors were prepared with five types of latexes having different particle sizes. Coated papers were produced with high solid coating colors and with low solid coating colors in a industrial coater, respectively. In high solid coating colors, rheology modifier was used and GCC content was high. It was concluded that, in order to control binder migration and hence print mottle, latex particle sizes shall be controlled as well as formation, sizing degree and roughness of basis paper.

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.

A Numerical Simulation for the Dam-Break Wave from the Hypothetical Failure of Soyanggang Dam (소양강댐 가상 파괴파의 수치모의)

  • Lee, Sang Ho;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.109-122
    • /
    • 1992
  • With the uncertainty of breaching mechanism, channel roughness, and elevation-discharge relationship at the downstream dam sites, the dam break wave from the hypothetical failure of Soyanggang dam is routed by DAMBRK. Simulation results show that lower region of Seoul will be flooded in 6~8 hours which has the elevation lower than 30~20m, and most part of Chuncheon will also be flooded. The peak discharge becomes approximately 70,000 CMS at Indogyo, and 220,000~340,000 CMS at Chuncheon. Sensitivity analysis shows that the inundation feature of Seoul will hardly be affected by the failure of downstream dams.

  • PDF

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method (냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가)

  • Hwang I.O.;Kwon D.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF