• 제목/요약/키워드: Environment risk

Search Result 3,452, Processing Time 0.042 seconds

Development of a General Occupational Safety and Health (OSH) Guide for Maintenance in Etching, Deposition, and Ion Implantation Facilities (반도체 공정 설비 정비 작업 안전보건 가이드: 증착, 식각, 이온주입)

  • Kyung Ehi Zoh;Taek-hyeon Han;Jae-jin Moon;Ingyun Jung;Yeong Woo Hwang;Seyoung Kwon;Kyung-yoon Ko;Mingun Lee;Jaepil Chang;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.125-133
    • /
    • 2024
  • Objectives: The aim of this study is to develop a comprehensive Occupational Safety and Health (OSH) guide for maintenance tasks in semiconductor processing, specifically focusing on etching, deposition, and ion implantation processes. Methods: The development of the OSH guide involved a literature review, consultations with industry experts, and field investigations. It concentrates on Maintenance Work (MW) operations in these specialized areas. Results: The result is a detailed OSH guide tailored to MW in etching, deposition, and ion implantation facilities within semiconductor processing. This guide is structured to assist maintenance workers through pre-, during and post-MW phases, ensuring easy comprehension and adherence to safety protocols. It highlights the necessity of safety and health measures throughout the MW process to protect personnel. The guide is enriched with real-life scenarios and visual aids, including cartoons and photographs, to aid in the understanding and implementation of safety and health principles. Conclusions: This OSH guide is designed to enhance the protection of workers engaged in maintenance activities in the electronics sector, particularly in semiconductor manufacturing. It aims to improve compliance with safety and health standards in these high-risk environments.

Design, simulation and experimental analysis of fiber-reinforced silicone actuators

  • Sina Esmalipour;Masoud Ajri;Mehrdad Ekhtiari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.211-225
    • /
    • 2024
  • Soft bending actuators have gained significant interest in robotic applications due to their compliance and lightweight nature. Their compliance allows for safer and more natural interactions with humans or other objects, reducing the risk of injury or damage. However, the nonlinear behaviour of soft actuators presents challenges in accurately predicting their bending motion and force exertion. In this research, a new comprehensive study has been conducted by employing a developed 3D finite element model (FEM) to investigate the effect of geometrical and material parameters on the bending behaviour of a soft pneumatic actuator reinforced with Kevlar fibres. A series of experiments are designed to validate the FE model, and the FE model investigates the improvement of actuator performance. The material used for fabricating the actuator is RTV-2 silicone rubber. In this study, the Cauchy stress was expanded for hyperelastic models and the best model to express the stress-strain behaviour based on ASTM D412 Type C tensile test for this material has been obtained. The results show that the greatest bending angle was achieved for the semi-elliptical actuator made of RTV2 material with a pitch of 1.5 mm and second layer thickness of 1 mm. In comparison, the maximum response force was obtained for the semi-elliptical actuator made of RTV2 material with a pitch of 6 mm and a second layer thickness of 2 mm. Additionally, this research opens up new possibilities for development of safer and more efficient robotic systems that can interact seamlessly with humans and their environment.

Suggestion on Screening Concept of Radionuclides to be Considered for the Radiological Safety Assessment of the Domestic KBS-3 Type Geological Disposal Facility of High-level Radioactive Waste(HLW) (국내 KBS-3 방식 고준위방사성폐기물 심층처분시설 방사선학적 안전성 평가 대상 방사성핵종 목록 선정개념(안) 제언)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • The transport calculation for a wide variety of radionuclides contained in high-level radioactive waste, especially spent nuclear fuel, is computationally difficult, and input data collection for this also take a considerable amount of time. Accordingly, considering limited resources, it is possible to reduce the calculation time while minimizing impact on accuracy by including only radionuclides important to calculation result through applying some criteria among potential radiation source terms that may release into environment. In this paper, therefore, we reviewed and analyzed the screening process performed to select radionuclides to be considered in the safety assessment for the KBS-3 type repository in Sweden and Finland. In both countries, it was confirmed that a list of radionuclides was selected by comprehensively considering screening criteria such as radioactivity inventory, half-life, radiotoxicity, risk quotient, and transport properties, and etc. A comparison of radionuclides included in the radiological safety assessment in both countries suggests that most of nuclides are considered in common, and a few nuclides considered only in one country are due to differences in decay chain treatment or spent fuel types. As of now, since most of information on the disposal facility in Korea has not been determined, it is necessary to comprehensively model release and transport of all radionuclides considered in Sweden and Finland when performing the radiological safety assessment. Based on these results, we derived the screening concept of selecting a list of radionuclides to be considered in the radiological safety assessment for the domestic KBS-3 type geological disposal facility, and this result is expected to be used as technical basis for confirming conformity with the safety objective. In a more detailed evaluation reflecting domestic characteristics in the future, it would be desirable to consider only radionuclides selected in accordance with the screening procedure. However, further research should be conducted to determine the quantitative limit for each criteria.

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

Performance evaluation of API Gateway in GraalVM and Virtual Thread environment (GraalVM 및 Virtual Thread 환경에서 API Gateway의 성능 평가)

  • Dong-il Cho
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.39-46
    • /
    • 2024
  • An API gateway is a high-availability component that provides a single entry point for API clients outside the cloud to connect with services inside the cloud. It has a high risk of creating bottlenecks and requires redeployment when services change. The Java language, in which several API gateways are implemented, announced technologies called GraalVM Native Image and Virtual Thread to overcome problems with deployment and operational performance. Applying these technologies to Java applications requires changes to the source code and deployment procedures. In this study, the performance of the API gateway was measured and analyzed when it operated based on GraalVM Native Image and Java Virtual Machine(JVM) and between Virtual Thread and Reactive thread processing methods. In this study, evaluation indicators were selected to evaluate deployment performance and operational performance, and the performance of the evaluation indicators was measured and evaluated in four environments.

Comparison of Effect of Hip-dominant vs Knee-dominant Hamstring Strengthening Exercises on the Muscle Strength, Range of Movement, and Functional Performance Level: A Randomized Intervention Trial (엉덩관절-우세 넙다리뒤근 운동과 무릎관절-우세 넙다리뒤근 운동이 넙다리뒤근 근력과 관절가동범위, 기능적 수행 수준에 미치는 영향 비교: 무작위 중재 시험)

  • Hyun Kim;Jin-taek Kim;Suhn-yeop Kim
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.13-26
    • /
    • 2024
  • Background: The most common form of injury in soccer is a hamstring strain. Eccentric bias exercises are crucial for reducing injury risk and improving sprinting performance. The purpose of this study was to compare a 4-week hip-dominant hamstring strengthening exercise program (HDE) with a knee-dominant hamstring strengthening exercise program (KDE) in youth soccer players. Method: The sample (n=31) was randomly divided into two groups: HDE (n=17) and KDE (n=14), with soccer players in HDE performing hip joint-dominant hamstring strengthening exercises and those in KDE performing knee joint-dominant hamstring strengthening exercises. Each intervention was conducted three times per week for four weeks. The outcome measures included the hamstring strength test (isometric strength test, eccentric strength test), knee joint range of motion (90/90 active knee extension; AKE) test, lower limb function test Y-balance test and Agility T-test. Results: Following the intervention, both groups showed significant improvement in isometric and eccentric hamstring strength on both dominant and non-dominant sides (p<.05). The AKE test showed significant improvement in the dominant leg (p<.05) and non-dominant leg only in KDE. The agility test significantly improved in HDE (p<.05). There was a slight improvement in the Y-balance test score; however, the difference was not statistically significant. There were no differences between the two groups in the values before, and after the intervention for all items. Conclusion: The hip-dominant and knee-dominant hamstring strengthening exercise should be coordinated and used based on the environment during hamstring injury prevention training.

  • PDF

Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future

  • Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.493-509
    • /
    • 2024
  • In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.

Evaluation of Indoor Air Quality in a Hospital Operating Room During Laparoscopic Surgery (병원 수술실에서의 복강경 수술 중 실내공기질 평가)

  • Choi, Dong Hee;Kang, Dong Hwa
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.30 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • Purpose: The identification and quantification of indoor airborne contaminants, including bio-aerosols, particulates, and gaseous contaminants, are crucial for maintaining acceptable indoor air quality for hospital operating rooms (ORs). Laparoscopic surgery has become widely accepted for various surgical procedures due to its rapid recovery rate and the low risk associated with small incisions compared to conventional open surgery. The objective of this study is to investigate the indoor air quality in hospital ORs and to identify indoor airborne contaminants generated during laparoscopic surgery. Methods: Measurements of an indoor environment, including temperature, humidity and air quality, were performed in an OR before and during a laparoscopic surgery. Indoor airborne contaminants, including volatile organic compounds (VOCs), formaldehyde, carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen dioxide (NO2), suspended indoor particles, and airborne bacteria, were measured simultaneously. Results: The study determined that the concentrations of indoor air particles and airborne bacteria increased during the surgery but were within acceptable levels. However, the concentration of CO2, reached a high level of 1,791 ppm due to the CO2 gas required for maintaining the pneumoperitoneum during the surgery. Implications: The results emphasized the use of ventilation and filtration in a laparoscopic surgery room to lower the concentration of filterable and non-filterable contaminants.

Ensemble Based Optimal Feature Selection Algorithm for Efficient Intrusion Detection in Wireless Sensor Network

  • Shyam Sundar S;R.S. Bhuvaneswaran;SaiRamesh L
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2214-2229
    • /
    • 2024
  • Wireless sensor network (WSN) consists of large number of sensor nodes that are deployed in geographical locations to collect sensed information, process data and communicate it to the control station for further processing. Due the unfriendly environment where the sensors are deployed, there exist many possibilities of malicious nodes which performs malicious activities in the network. Therefore, the security threats affect performance and life time of sensor networks, whereas various security aspects are there to address security issues in WSN namely Cryptography, Trust Management, Intrusion Detection System (IDS) and Intrusion Prevention Systems (IPS). However, IDS detect the malicious activities and produce an alarm. These malicious activities exploit vulnerabilities in the network layer and affect all layers in the network. Existing feature selection methods such as filter-based methods are not considering the redundancy of the selected features and wrapper method has high risk of overfitting the classification of intrusion. Due to overfitting, the classification algorithm fails to detect the intrusion in better manner. The main objective of this paper is to provide the efficient feature selection algorithm which was suitable for any type classification algorithm to detect the intrusion in an effective manner. This paper, the security of the network is addressed by proposing Feature Selection Algorithm using Chi Squared with Ensemble Method (FSChE). The proposed scheme employs the combination of decision tree along with the random forest classification algorithm to form ensemble classifier. The experimental results justify the feasibility of the proposed scheme in terms of attack detection, packet delivery ratio and time analysis by employing NSL KDD cup data Set. The obtained results shows that the proposed ensemble method increases the overall performance by 10% to 25% with respect to mentioned parameters.

Virtual Reality Contents for Rehabilitation Training Utilizing Skeletal Data and Foot Pressure Mat (골격 데이터와 발 압력매트를 활용한 재활 훈련용 가상 현실 콘텐츠)

  • Jongwook Si;Hyeri Jeong;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.330-338
    • /
    • 2024
  • With the growing interest in rehabilitation therapy and exercise programs, there is an increasing need for smart content that simultaneously addresses both health and engagement. Particularly, exercises performed in a state of physical imbalance carry a high risk of injury, making it essential to detect and integrate balance into the training process. This paper proposes Rehabilitation Training program that combines a pressure platform with virtual reality (VR) technology to address this issue. The program enables users to perform exercises such as squats, stationary walking, and forward-backward walking in a VR environment, utilizing real-time foot pressure data captured through a pressure mat. Additionally, an algorithm based on YOLOv8-pose extracted skeletal coordinates is proposed to assess body balance and automatically count squat repetitions. The experimental results showed an average accuracy of 87.9% for each posture, confirming that users can be provided with a safer, more efficient, and immersive training experience through this approach.