• Title/Summary/Keyword: Environment Assessment

Search Result 5,465, Processing Time 0.028 seconds

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

A Comparative Errors Assessment Between Surface Albedo Products of COMS/MI and GK-2A/AMI (천리안위성 1·2A호 지표면 알베도 상호 오차 분석 및 비교검증)

  • Woo, Jongho;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Byeon, Yugyeong;Jeon, Uujin;Sohn, Eunha;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1767-1772
    • /
    • 2021
  • Global satellite observation surface albedo data over a long period of time are actively used to monitor changes in the global climate and environment, and their utilization and importance are great. Through the generational shift of geostationary satellites COMS (Communication, Ocean and Meteorological Satellite)/MI (Meteorological Imager sensor) and GK-2A (GEO-KOMPSAT-2A)/AMI (Advanced Meteorological Imager sensor), it is possible to continuously secure surface albedo outputs. However, the surface albedo outputs of COMS/MI and GK-2A/AMI differ between outputs due to Differences in retrieval algorithms. Therefore, in order to expand the retrieval period of the surface albedo of COMS/MI and GK-2A/AMI to secure continuous climate change monitoring linkage, the analysis of the two satellite outputs and errors should be preceded. In this study, error characteristics were analyzed by performing comparative analysis with ground observation data AERONET (Aerosol Robotic Network) and other satellite data GLASS (Global Land Surface Satellite) for the overlapping period of COMS/MI and GK-2A/AMI surface albedo data. As a result of error analysis, it was confirmed that the RMSE of COMS/MI was 0.043, higher than the RMSE of GK-2A/AMI, 0.015. In addition, compared to other satellite (GLASS) data, the RMSE of COMS/MI was 0.029, slightly lower than that of GK-2A/AMI 0.038. When understanding these error characteristics and using COMS/MI and GK-2A/AMI's surface albedo data, it will be possible to actively utilize them for long-term climate change monitoring.

The Damage Assessment, Construction Point of Time and Deterioration Diagnosis and Conservation Maintenance of Stone Statues Around the Stone Pagoda in Mireuksaji Temple in Iksan (익산 미륵사지 석탑 석인상의 조영시기와 훼손도 진단 및 보존관리)

  • Lee, Dong-sik;Lee, Yeon-gyeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.74-91
    • /
    • 2014
  • The stone statues in the site of Mireuksaji Temple(Iksan, South Korea) were created after the stone pagoda was built in 639. They, transitional statues between animal sculptures and human shaped statues made from the late Goryeo dynasty until the early Joseon dynasty, were set up at the four corners of the stone pagoda by way of guardians. In the case of three statues, their surfaces were denudated and their iconographies have been indiscernible. However, the one in the southwest clearly shows its iconography. It is inferior in properties to the other three statues in the northwest, the northeast and the southeast respectively, but on the other hand its iconography has been well maintained. The reason is related to exposure to harmful environments; specifically, the retaining wall, built around the stone pagoda in the 17th century, had the southwest statue inside and could naturally worked as a buffer against harmful environments. As a result, for about 400 years there has been difference in weathering conditions between the three stone statues and the southwest statue, which brought denudation, the consequent indiscernibleness of iconography and biological invasion to the three statues, notwithstanding superior properties(northwest statue:$176kgf/cm^2$, northeast statue:$109kgf/cm^2$, southeast statue:$273kgf/cm^2$). In contrast, the southwest statue significantly shows its iconography with black contaminants and granule decomposition, despite inferior properties($133kgf/cm^2$). Defenseless exposure to external environment is not recommended for the stone statues, because it is hard to preserve the extant iconography. Herein lies the application of the data on microclimate around Mireuksaji Temple. As regards the weathering zone in which the stone statues are located, Conservation increases in acidity and frequency as years go by, Hereat, in the approach to the Conservation of stone statues, the first consideration needs to be morphological historicity rather than geographical location.

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process (추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.158-169
    • /
    • 2019
  • A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Assessment of Contamination and Sources Identification of Heavy Metals in Stream Water and Sediments around Industrial Complex (산업단지 유역 하천수와 퇴적물 내 중금속 오염도 평가 및 기원 추적 연구)

  • Jeong, Hyeryeong;Lee, Jihyun;Choi, Jin-Young;Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.179-191
    • /
    • 2019
  • Heavy metals in stream water and sediments around industrial complex were studied in order to assess the contamination and to identify the potential source of metals. High variability has been observed for both dissolved and particulate phases in stream water with coefficient of variation (CV) ranging from 1.3 to 2.8. The highest metal concentrations in both phases were observed in Gunja for Ni and Cu, in Jungwang for Zn and Pb and in Shiheung for Cd, respectively. These results indicate that the different metal sources could be existing. The concentrations of the heavy metals in sediments decreased in the order of Cu>Zn>Pb>Cr>Ni>As>Cd>Hg, with mean of 2,549, 1,742, 808, 539, 163, 17.1, 5.8, $0.07mg\;kg^{-1}$, respectively. Mean of metal concentrations(except for As) in sediments showed the highest values at Shiheung stream comparing with other streams. In sediments, the percent exceedance of class II grade that metal may potentially harmful impact on benthic organism for Cr, Ni, Cu, Zn, Cd, Pb was about 57%, 62%, 84%, 60%, 68%, 81% for all stream sediments, respectively. Sediments were classified as heavily to extremely polluted for Cu and Cd, heavily polluted for Zn and Pb, based on the calculation of Igeo value. About 59% and 35% of sediments were in the categories of "poor" and "very poor" pollution status for heavy metals. Given the high metal concentrations, industrial wastes and effluents, having high concentrations of most metals originated from the manufacture and use of metal products in this region, might be discharged into the stream through sewer outlet. The streams receive significant amounts of industrial waste from the industrial facilities which is characterized by light industrial complexes of approximately 17,000 facilities. Thus, the transport of metal loads through streams is an important pathway for metal pollution in Shihwa Lake.

Development of water quality and aquatic ecosystem model for Andong lake using SWAT-WET (SWAT-WET을 이용한 안동호의 수질 및 수생태계 모델 구축)

  • Woo, Soyoung;Kim, Yongwon;Kim, Wonjin;Kim, Sehoon;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.719-730
    • /
    • 2021
  • The objective of this study is to develop the water quality and aquatic ecosystem model for Andong lake using SWAT-WET (Soil and Water Assessment Tool-Water Ecosystem Tool) and to evaluate the applicability of WET. To quantify the pollutants load flowing into Andong lake, a watershed model of SWAT was constructed for Andong Dam basin (1,584 km2). The calibration results for Dam inflow and water quality loads (SS, T-N, T-P) were analyzed that average R2 was more than 0.76, 0.69, 0.84, and 0.60 respectively. The calibrated SWAT results of streamflow and nutrients concentration was used into WET input data. WET was calibrated and validated for water temperature, dissolved oxygen, and water quality concentration (T-N, T-P) of Andong lake. The WET calibrated results was analyzed that PBIAS was +19%, -13%, +4%, and +26.5% respectively and showed that it was simulated to a significant level compared with the observation data. The observed dry weight (gDW/m2) of zoobenthos was less than 0.5, but the average value of simulation was analyzed to be 0.8, which is because the WET model considers zoobenthos with a broader concept. Although accurate calibration is difficult due to the lack of observed data, SWAT-WET can analyze the effects of environmental change in the upstream watershed on the lake based on long-term simulation based on watershed model. Therefore, the results of this study can be used as basic data for managing the aquatic environment of Andong lake.

A Comparative Study on the Information of Zooplankton Community Based on Towing Type and Depth in the Lake Ecosystems (정수생태계 동물플랑크톤 채집 시 네트 인양 유형 및 수심에 따른 군집 정보 비교)

  • OH, Hye-Ji;Chae, Yeon-Ji;Ku, Doyeong;Kim, Yu-Jin;Wang, Jeong-Hyeon;Choi, Bohyung;Ji, Chang Woo;Kwak, Ihn-Sil;Park, Young-Seuk;Nam, Gui-Sook;Kim, Yong-Jae;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.365-373
    • /
    • 2020
  • Biomonitoring Survey and Assessment Manual for lake ecosystem suggest zooplankton collection methods to compare relatively the number of species, population density, and community indices, taking into account the convenience of the field sampling according to the sites' water depth. In this study, the oblique towing and 20 m vertical towing methods presented in the manual were respectively compared with the whole water column-vertical towing and we analyzed the differences and characteristics of zooplankton community information gathered by each collection method. For community indices, there was no difference in the comparison of oblique/vertical towing methods in the shallow lake, but in the deep lake, the diversity and richness indices increased when vertically towing through whole water column rather than when limiting the towing depth to 20 m. In addition, the total zooplankton density collected by the oblique/20 m vertical towing methods was about three times higher than the whole water column-vertical towing method, which means that the density of zooplankton community can be overestimated depending on the collection methods. It appears to be results of differences in the zooplankton density by water layer arising from their vertical distribution and in filtered raw water quantity according to the towing depth/distance. Hence, for zooplankton community information to be used as a functional quantitative indicator representing the entire lake, it would be more appropriate to apply the whole water column-vertical towing method with considering the distribution of zooplankton density by depth and contribution rate of each water layer when converting total zooplankton density.

Assessing and Mapping the Aesthetic Value of Bukhansan National Park Using Geotagged Images (지오태그 이미지를 활용한 북한산국립공원의 경관미 평가 및 맵핑)

  • Kim, Jee-Young;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.64-73
    • /
    • 2021
  • The purpose of this study is to present a method to assess the landscape aesthetic value of Bukhansan National Park using geotagged images that have been shared on social media sites. The method presented in this study consisted mainly of collecting geotagged image data, identifying landscape images, and analyzing the cumulative visibility by applying a target probability index. Ramblr is an application that supports outdoor activities with many users in Korea, from which a total of 110,954 geotagged images for Bukhansan National Park were collected and used to assess the landscape aesthetics. The collected geotagged images were interpreted using the Google Vision API, and were subsequently were divided into 11 landscape image types and 9 non-landscape image types through cluster analysis. As a result of analyzing the landscape types of Bukhansan National Park based on the extracted landscape images, landscape types related to topographical characteristics, such as peaks and mountain ranges, accounted for the largest portion, and forest landscapes, foliage landscapes, and waterscapes were also commonly found as major landscape types. In the derived landscape aesthetic value map, the higher the elevation and slope, the higher the overall landscape aesthetic value, according to the proportion and characteristics of these major landscape types. However, high landscape aesthetic values were also confirmed in some areas of lowlands with gentle slopes. In addition, the Bukhansan area was evaluated to have higher landscape aesthetics than the Dobongsan area. Despite the high elevation and slope, the Dobongsan area had a relatively low landscape aesthetic value. This shows that the aesthetic value of the landscape is strongly related not only to the physical environment but also to the recreational activities of visitors who are viewing the scenery. In this way, the landscape aesthetics assessment using the cumulative visibility of geotagged images is expected to be useful for planning and managing the landscape of Bukhansan National Park in the future, through allowing the geographical understanding of the landscape values based on people's perceptions and the identification of the regional deviations.

Evaluation of Rice Protein Content Variation on Cultivation and Environmental Conditions (재배 및 환경조건에 따른 쌀 단백질 함량 변동 평가 )

  • Yun-Ho, Lee;Jeong-Won, Kim;Jae-Hyeok, Jeong;Woon-Ha, Hwang;Hyeon-Seok, Lee;Seo-Yeong, Yang;Chung-Keun, Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.267-274
    • /
    • 2022
  • The effect of year, varieties, nitrogen application, and transplant time were examined in relation to rice of protein. An experiment was conducted using 12 rice varieties to investigate the effect of management and weather conditions on brown rice protein of during the filling stage. The transplanting time was set to be three groups including early, medium, and late timing. The nitrogen application was set to be 0 N kg / 10a, 9N kg / 10a and 18 N kg / 10a to examine the effect of fertilizer management on protein content. Field experiments were conducted in three growing seasons including 2019, 2020, and 2021. The brown rice of protein content were 5.7%, 5.9%, and 6.6% under early, medium, and late transplanting time conditions, respectively. The protein content differ by variety. For example, Chucheong, Hopum, Ilpum, Mipum, Odae, Saenuri, and Saeilmi had more than 6.1%, and Chindeul, Shindongjin, Samkwang, Unkwang, Younhojinmi were less than 6.1%. Nitrogen content was 5.7% for 0kgN /10a, 6.1% for 9kgN /10a, and 6.8% for 18kgN /10a. The contribution of the characteristics to the protein content was highest in nitrogen content (38.8%), followed by transplanting time (13.7%), variety (8.2%), and year (3.5%). The average temperature for 20 days after heading time was the highest (9.3%), followed by sunshine duration (3.9%) and solar radiation (3.5%). Our results revealed that brown rice protein content was determined to be affected by changes in average temperature, sunshine duration and solar radiation for 20 days after heading time. This suggested that assessment of temperature and solar radiation after heading time would indicate the degree of rice quality in terms of protein.