• Title/Summary/Keyword: Entropy-based Uncertainty

Search Result 32, Processing Time 0.022 seconds

Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.20-33
    • /
    • 2015
  • Spectrum sensing is a key component of cognitive radio. The prediction of the primary user status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, because of noise uncertainty, secondary users have difficulty distinguishing between the primary signal and an unauthorized signal when an unauthorized user exists in a cognitive radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy between the primary signal and the unauthorized signal. The ability to detect the primary signal is thus robust against noise uncertainty, which leads to superior sensing performance in a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the primary user detection probability.

BIVARIATE DYNAMIC CUMULATIVE RESIDUAL TSALLIS ENTROPY

  • SATI, MADAN MOHAN;SINGH, HARINDER
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.45-58
    • /
    • 2017
  • Recently, Sati and Gupta (2015) proposed two measures of uncertainty based on non-extensive entropy, called the dynamic cumulative residual Tsallis entropy (DCRTE) and the empirical cumulative Tsallis entropy. In the present paper, we extend the definition of DCRTE into the bivariate setup and study its properties in the context of reliability theory. We also define a new class of life distributions based on bivariate DCRTE.

Uncertainty Improvement of Incomplete Decision System using Bayesian Conditional Information Entropy (베이지언 정보엔트로피에 의한 불완전 의사결정 시스템의 불확실성 향상)

  • Choi, Gyoo-Seok;Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.47-54
    • /
    • 2014
  • Based on the indiscernible relation of rough set, the inevitability of superposition and inconsistency of data makes the reduction of attributes very important in information system. Rough set has difficulty in the difference of attribute reduction between consistent and inconsistent information system. In this paper, we propose the new uncertainty measure and attribute reduction algorithm by Bayesian posterior probability for correlation analysis between condition and decision attributes. We compare the proposed method and the conditional information entropy to address the uncertainty of inconsistent information system. As the result, our method has more accuracy than conditional information entropy in dealing with uncertainty via mutual information of condition and decision attributes of information system.

Information Management by Data Quantification with FuzzyEntropy and Similarity Measure

  • Siang, Chua Hong;Lee, Sanghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Data management with fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem. Calculation of certainty or uncertainty for data, fuzzy entropy and similarity measure are designed and proved. Proposed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration.Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.

Information Quantification Application to Management with Fuzzy Entropy and Similarity Measure

  • Wang, Hong-Mei;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.275-280
    • /
    • 2010
  • Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration. Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.

Extended Information Entropy via Correlation for Autonomous Attribute Reduction of BigData (빅 데이터의 자율 속성 감축을 위한 확장된 정보 엔트로피 기반 상관척도)

  • Park, In-Kyu
    • Journal of Korea Game Society
    • /
    • v.18 no.1
    • /
    • pp.105-114
    • /
    • 2018
  • Various data analysis methods used for customer type analysis are very important for game companies to understand their type and characteristics in an attempt to plan customized content for our customers and to provide more convenient services. In this paper, we propose a k-mode cluster analysis algorithm that uses information uncertainty by extending information entropy to reduce information loss. Therefore, the measurement of the similarity of attributes is considered in two aspects. One is to measure the uncertainty between each attribute on the center of each partition and the other is to measure the uncertainty about the probability distribution of the uncertainty of each property. In particular, the uncertainty in attributes is taken into account in the non-probabilistic and probabilistic scales because the entropy of the attribute is transformed into probabilistic information to measure the uncertainty. The accuracy of the algorithm is observable to the result of cluster analysis based on the optimal initial value through extensive performance analysis and various indexes.

Effect of Nonlinear Transformations on Entropy of Hidden Nodes

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • Hidden nodes have a key role in the information processing of feed-forward neural networks in which inputs are processed through a series of weighted sums and nonlinear activation functions. In order to understand the role of hidden nodes, we must analyze the effect of the nonlinear activation functions on the weighted sums to hidden nodes. In this paper, we focus on the effect of nonlinear functions in a viewpoint of information theory. Under the assumption that the nonlinear activation function can be approximated piece-wise linearly, we prove that the entropy of weighted sums to hidden nodes decreases after piece-wise linear functions. Therefore, we argue that the nonlinear activation function decreases the uncertainty among hidden nodes. Furthermore, the more the hidden nodes are saturated, the more the entropy of hidden nodes decreases. Based on this result, we can say that, after successful training of feed-forward neural networks, hidden nodes tend not to be in linear regions but to be in saturated regions of activation function with the effect of uncertainty reduction.

Distance and Entropy Based Image Viewpoint Selection for Accurate 3D Reconstruction with NeRF (NeRF의 정확한 3차원 복원을 위한 거리-엔트로피 기반 영상 시점 선택 기술)

  • Jinwon Choi;Chanho Seo;Junhyeok Choi;Sunglok Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.98-105
    • /
    • 2024
  • This paper proposes a new approach with a distance-based regularization to the entropy applied to the NBV (Next-Best-View) selection with NeRF (Neural Radiance Fields). 3D reconstruction requires images from various viewpoints, and selecting where to capture these images is a highly complex problem. In a recent work, image acquisition was derived using NeRF's ray-based uncertainty. While this work was effective for evaluating candidate viewpoints at fixed distances from a camera to an object, it is limited when dealing with a range of candidate viewpoints at various distances, because it tends to favor selecting viewpoints at closer distances. Acquiring images from nearby viewpoints is beneficial for capturing surface details. However, with the limited number of images, its image selection is less overlapped and less frequently observed, so its reconstructed result is sensitive to noise and contains undesired artifacts. We propose a method that incorporates distance-based regularization into entropy, allowing us to acquire images at distances conducive to capturing both surface details without undesired noise and artifacts. Our experiments with synthetic images demonstrated that NeRF models with the proposed distance and entropy-based criteria achieved around 50 percent fewer reconstruction errors than the recent work.

Uncertainty Measurement of Incomplete Information System based on Conditional Information Entropy (조건부 정보엔트로피에 의한 불완전 정보시스템의 불확실성 측정)

  • Park, Inkyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • The derivation of optimal information from decision table is based on the concept of indiscernibility relation and approximation space in rough set. Because decision table is more likely to be susceptible to the superposition or inconsistency in decision table, the reduction of attributes is a important concept in knowledge representation. While complete subsets of the attribute's domain is considered in algebraic definition, incomplete subsets of the attribute's domain is considered in information-theoretic definition. Therefore there is a marked difference between algebraic and information-theoretic definition. This paper proposes a conditional entropy using rough set as information theoretical measures in order to deduct the optimal information which may contain condition attributes and decision attribute of information system and shows its effectiveness.

A Qualitative Approach to eIT Project Management (e-비즈니스 IT 프로젝트 관리의 정성적 접근 모형의 개발)

  • Jeong, Gi-Ho
    • Journal of Information Technology Services
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 2002
  • This paper suggests a new approach to IT project management based on a regular project meeting results to consider the recent project environment. The greater part of recent IT projects are related to e-business transformation. Transforming to e-business is a new problem very different from those they have been worked, in several point of views. Under e-business era, therefore any IT project is being implemented in more complex, dynamic and uncertain environment than traditional. That is, project leaders must consider more factors to control projects including resources, quality, risks, and technologies, and human resources. The project organizations and software corporations thus need to develop and establish new concepts or methodologies to manage e-business projects. In this point of view, an entropy model in this study is introduced for estimating and managing the uncertainty in project control using multi-attributes of project meeting. This paper proposes a new frame work based on entropy model using project meeting results to consider eIT project environment with a small pilot study.