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BIVARIATE DYNAMIC CUMULATIVE RESIDUAL TSALLIS

ENTROPY†

MADAN MOHAN SATI∗ AND HARINDER SINGH

Abstract. Recently, Sati and Gupta (2015) proposed two measures of
uncertainty based on non-extensive entropy, called the dynamic cumulative

residual Tsallis entropy (DCRTE) and the empirical cumulative Tsallis
entropy. In the present paper, we extend the definition of DCRTE into the
bivariate setup and study its properties in the context of reliability theory.
We also define a new class of life distributions based on bivariate DCRTE.
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1. Introduction

The concept of entropy was introduced by Shannon [21]. Let X be a continu-
ous random variable having probability density function f(x), cumulative distri-
bution function F (x), survival function F̄ (x) and hazard rate r(x) = f(x)/F̄ (x).
Then the differential form of Shannon entropy is defined as

H(X) = −
∫ ∞

0

f(x) log (f(x)) dx. (1)

The entropy measure (1) is not useful for a system which has survived up to
age t, Ebrahimi [5] modified (1) to measure uncertainty for the residual life time
Xt = [X − t|X > t], where t > 0 given by

H(X; t) = −
∞∫
t

f(x)

F̄ (t)
log

(
f(x)

F̄ (t)

)
dx. (2)
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Rao et al. [16] introduced a new measure of uncertainty based on survival func-
tion instead of probability density function of a random variable X as follows:

ξ(X) = −
∫ ∞

0

F̄ (x) log
(
F̄ (x)

)
dx, (3)

and called it the Cumulative Residual Entropy (CRE).
Asadi and Zohrevand [2] proposed a new measure of uncertainty for residual
lifetime Xt = [X − t|X > t], which is given as

ξ(X; t) = −
∞∫
t

F̄ (x)

F̄ (t)
log

(
F̄ (x)

F̄ (t)

)
dx, (4)

and called it Dynamic Cumulative Residual Entropy (DCRE).
The properties and applications of DCRE have been studied extensively by Asadi
and Zohervand [2], Di Crescenzo and Longobardi [4], Abbasnejad et al. [1],
Navarro et al. [11], Sunoj and Linu [22], Kumar and Taneja [9], Sati and Gupta
[20].

In the literature several generalization of Shannon entropy are available such
as Renyi entropy [17], Varma entropy [24], Tsallis entropy [23] etc. In this article,
we focus on non-extensive entropy.

Tsallis [23] defined the generalized non-expansive entropy of order α as

Sα(X) =
1

α− 1

(
1−

∫ ∞

0

(f(x))αdx

)
, α > 0, α ̸= 1. (5)

In a recent work, Sati and Gupta [20] have proposed Dynamic Cumulative Resid-
ual Tsallis Entropy (DCRTE) of order α as follows:

ηα(X; t) =
1

α− 1

1 −
∞∫
t

(
F̄ (x)

F̄ (t)

)α

dx

 , α > 0 , α ̸= 1, (6)

and studied its properties and applications.
The multivariate life distributions are used for studying the reliability char-
acteristics of multi-component system with each component having a lifetime
depending on the next component. In the univariate case, the reliability char-
acteristics can be extended to higher dimensions. Although, a lot of work has
been done on information measures in the univariate case, but very limited work
has been done in higher dimensions. For more details, we refer to Rajesh and
Nair [12], Nadarajah and Zografos [10], Ebrahimi et al. [6], Sathar et al. [19]
and Rajesh et al. [13], [14], [15].

The main objective of the paper is to extend DCRTE defined in (6) to bivari-
ate setup and study its properties and connect it to some well known reliability
models. In section 2, we propose a bivariate dynamic cumulative residual Tsallis
entropy (BDCRTE) of order α and characterize some well known bivariate mod-
els using the BDCRTE. In section 3, we define new classes of life distributions
based on BDCRTE and study their properties.
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2. Bivariate Dynamic Cumulative Residual Tsallis
Entropy(BDCRTE)

In this section, we extend the definition of DCRTE to the bivariate setup
known as the bivariate cumulative residual Tsallis entropy (BDCRTE) and we
also give some characterization results of well known bivariate distributions in
term of BDCRTE.

Definition 2.1. Let X = (X1, X2) be a bivariate random vector admitting an
absolutely continuous probability density function f(x1, x2), cumulative density
function F (x1, x2) and survival function F̄ (x1, x2) with respect to Lebesgue
measure in the positive octantR+

2 = {(t1, t2)|ti > 0, i = 1, 2} of the two-dimensional
Euclidean space R2. We define the bivariate DCRTE as

ηα(X; t1, t2) =
1

α− 1

1 −
∞∫

t1

∞∫
t2

(
F̄ (x1, x2)

F̄ (t1, t2)

)α

dx2dx1

 , α > 0 , α ̸= 1.

(7)

Ebrahimi [6] has proved that the bivariate residual entropy is not invariant un-
der non singular transformations. Similarly we can show that bivariate DCRTE
defined in equation (7) is not invariant under non singular transformations.

If Yj = ϕj(Xj), j = 1, 2 are one to one transformations, then

ηα(Yj ;ϕ1(t1), ϕ2(t2)) =
1

α− 1

1 −
∞∫

t1

∞∫
t2

(
F̄ (x1, x2)

F̄ (t1, t2)

)α

J dx2dx1

 ,

where J = | ∂
∂x1

ϕ1(x1)×
∂

∂x2
ϕ2(x2)| is the absolute value of the Jacobian of

transformation. In particular, if we take ϕj(Xj) = ajXj + bj , then we get

ηα(Yj ;ϕ1(t1), ϕ2(t2)) =
(1− a1 a2)

(α− 1)
+ a1 a2 ηα(X; t1, t2).

Now we take into account the behavior of the dynamic cumulative residual
Tsallis entropy for the conditional distributions. Let us consider the random
variables Yj = (Xj |Xi > ti, i, j = 1, 2; i ̸= j), where Yj , j = 1, 2 corresponds
to the conditional distributions of Xj given that Xi has survived up to time

ti, i = 1, 2 and have the survival functions
F̄ (x1, t2)

F̄ (t1, t2)
for x1 ≥ t1 &

F̄ (t1, x2)

F̄ (t1, t2)
for x2 ≥ t2, respectively. The DCRTE for the random variables Yj , j = 1, 2 are
defined as follows:

η1α(X; t1, t2) =
1

α− 1

1 −
∞∫

t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1

 , α > 0 , α ̸= 1, (8)
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and

η2α(X; t1, t2) =
1

α− 1

1 −
∞∫

t2

(
F̄ (t1, x2)

F̄ (t1, t2)

)α

dx2

 , α > 0 , α ̸= 1, (9)

respectively.
For a bivariate random vector X = (X1, X2), Johnson and Kotz [8] defined

the bivariate hazard rate as

r(t1, t2) = ( r1(t1, t2), r2(t1, t2) ),

where

ri(t1, t2) = − ∂

∂ti
log F̄ (t1, t2), i = 1, 2. (10)

For a bivariate random vector X = (X1, X2), Zahedi [25] defined the bivariate
mean residual life function (MRLF) as

m(t1, t2) = (m1(t1, t2), m2(t1, t2) ),

where

mi(t1, t2) =
(
F̄ (t1, t2)

)−1

∞∫
ti

F̄ (t1, t2) dti, i = 1, 2. (11)

The following theorem shows that the bivariate dynamic cumulative residual
Tsallis entropy (BDCRTE) uniquely determines the survival function F̄ (t1, t2).

Theorem 2.2. Let X = (X1, X2) be a non-negative random vector admit-
ting continuous distribution function with respect to Lebsegue measure. Let
ηiα(X; t1, t2) < ∞ ; i = 1, 2, t = (t1, t2) ≥ 0; ∀α > 0 ( ̸= 1). Then for each
α, ηiα(X; t1, t2) (where as ∂

∂ti
ηiα(X; t1, t2) ̸= 0, ∀ i = 1, 2 ) uniquely deter-

mines the survival function F̄ (t1, t2).

Proof. From the equation (8), we have

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(
F̄ (x1, t2)

)α
dx1(

F̄ (t1, t2)
)α . (12)

Differentiating (12) with respect to t1 and simplifying, we obtain

(α− 1)
∂

∂t1
η1α(X; t1, t2) = 1 + α r1(X; t1, t2) [(α− 1)η1α(X; t1, t2)− 1]. (13)

Similarly for i = 2, we also get

(α− 1)
∂

∂t2
η2α(X; t1, t2) = 1 + α r2(X; t1, t2) [(α− 1)η2α(X; t1, t2)− 1]. (14)

Let F̄X(t1, t2) and F̄Y (t1, t2) be two survival functions having bivariate dy-
namic entropies ηiα(X; t1, t2) and ηiα(Y ; t1, t2) with hazard rates ri(X; t1 t2)
and ri(Y ; t1 t2), i = 1, 2 respectively.
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Consider the following relationship between entropies of random vector X and
Y :

ηiα(X; t1, t2) = ηiα(Y ; t1, t2) , i = 1, 2. (15)

Taking i = 1 and differentiating (15) with respect to t1, we get

∂

∂t1
η1α(X; t1, t2) =

∂

∂t1
η1α(Y ; t1, t2).

(α− 1)
∂

∂t1
η1α(X; t1, t2) = (α− 1)

∂

∂t1
η1α(Y ; t1, t2). (16)

Using (13), the equation (16) becomes

1 + α r1(X; t1, t2) [(α− 1)η1α(X; t1, t2)− 1] = 1 + α r1(Y ; t1, t2) [(α− 1)η1α(Y ; t1, t2)− 1].
(17)

Since η1α(X; t1, t2) = η1α(Y ; t1, t2), therefore the equation (17) reduces to

r1(X; t1 t2) = r1(Y ; t1 t2).

Similarly for i = 2, we get

r2(X; t1 t2) = r2(Y ; t1 t2).

Thus, we have

F̄X(t1, t2) = F̄Y (t1, t2).

Hence, ηiα(X; t1, t2) uniquely determines the survival function F̄ (t1, t2). �

The following theorem characterize some well known bivariate distributions
using relationship between BDCRTE and bivariate mean residual life function
m(X; t1, t2).

Theorem 2.3. For the random vector X = (X1, X2) admitting continuous
distribution function with respect to Lebsegue measure, a relationship of the form

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) , i = 1, 2, α > 0 , α ̸= 1, (18)

where mi (X; t1, t2) , i = 1, 2 are the components of the bivariate mean residual
life function and K is a constant independent of ti, holds for all ti ≥ 0, if and
only if X follows any one of the three distributions:

(i) the bivariate Pareto distribution with joint survival function

F̄ (t1, t2) = (1 + a1t1 + a2t2 + bt1t2)
−c

; a1, a2, c, t1, t2 > 0;

0 < b < (c+ 1)a1a2, (19)

(ii) the Gumbel’s bivariate exponential distribution with joint survival function

F̄ (t1, t2) = exp (−λ1t1 − λ2t2 − θt1t2) ; λ1, λ2, t1, t2 > 0;

0 < θ < λ1λ2, (20)

and
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(iii) the bivariate finite range distribution with joint survival function

F̄ (t1, t2) = (1− p1t1 − p2t2 + qt1t2)
d
; p1, p2, d > 0; 0 < t1 <

1

p1
;

0 < t2 <
1− p1t1
p2 − qt1

, (21)

according as Kα < 1, Kα = 1 and Kα > 1, respectively.

Proof. Differentiating equation (18) with respect to t1 by taking i = 1, we obtain

(α− 1)
∂

∂t1
η1α(X; t1, t2) = −K ∂

∂t1
m1(X; t1, t2).

Using the equation (13), we get

1−Kαr1(X; t1, t2)m1(X; t1, t2) = −K ∂

∂t1
m1(X; t1, t2). (22)

Using the relation r1(X; t1, t2)m1(X; t1, t2) = 1+ ∂
∂t1
m1(X; t1, t2), the equation

(22) reduces to

∂

∂t1
m1(X; t1, t2) =

(Kα− 1)

K(1− α)
= C.

Integrating on both side with respect to t1, we get

m1(X; t1, t2) = Ct1 +D1(t2), (23)

where D1 is independent of t1.
Similarly for i = 2, we have

m2(X; t1, t2) = Ct2 +D2(t1). (24)

Hence

mi(X; t1, t2) = Cti +Di(tj) , i ̸= j, i, j = 1, 2,

where C = (Kα−1)
K(1−α) and Di(tj) is a function of tj only. Based on the character-

ization theorem given by Sankaran and Nair [18], we can easily prove that X
follows bivariate Pareto distribution with survival function (19) when C > 0,
Gumbel’s exponential distribution with survival function (20) when C = 0 and
bivariate finite range distribution with survival function (21) when C < 0.
Converse:

(i) When X follows bivariate Pareto distribution with survival function (19),
then using the equation (8), we get

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(1 + a1x1 + a2t2 + bx1t2)
−cα

dx1

(1 + a1t1 + a2t2 + bt1t2)
−cα

= 1−
[
(c− 1)

(cα− 1)

(1 + a1t1 + a2t2 + bt1t2)

(c− 1)(a1 + bt2)

]
.
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Similar result holds for i = 2. Hence

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) ,

where K = (c−1)
(cα−1) , such that Kα < 1.

(ii) When X follows Gumbel’s exponential distribution with survival function
(20), then using the equation (8), we get

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(
e−λ1x1−λ2t2−θx1t2

)α
dx1

(e−λ1t1−λ2t2−θt1t2)
α

= 1− 1

α(λ1 + θt2)
.

Similar result holds for i = 2. Hence

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) ,

where K = 1
α , such that Kα = 1.

(iii) When X follows bivariate finite range distribution with survival function
(21), then using the equation (8), we get

(α− 1) η1α(X; t1, t2) = 1−

∞∫
t1

(1− p1x1 − p2t2 + qx1t2)
dα

dx1

(1− p1t1 − p2t2 + qt1t2)
dα

= 1−
[
(d+ 1)

(dα+ 1)

(1− p1t1 − p2t2 + qt1t2)

(d+ 1)(p1 + qt2)

]
.

Similar result holds for i = 2. Hence

(α− 1) ηiα(X; t1, t2) = 1−Kmi (X; t1, t2) ,

where K = (d+1)
(dα+1) , such that Kα > 1.

�
Now we provide characterization result in terms of relationship between bi-

variate DCRTE and bivariate hazard rate function.

Theorem 2.4. For the random vector X = (X1, X2) admitting an absolutely
continuous function with respect to Lebesgue measure. Then the following rela-
tionship of the form

(α− 1)
∂

∂ti
ηiα(X; t1, t2) = c ri (X; t1, t2) , i = 1, 2, α > 0, α ̸= 1, (25)

hold for all t1, t2 ≥ 0, then X follows the Gumbel’s bivariate exponential distri-
bution with joint survival function

F̄ (t1, t2) = exp (−λ1t1 − λ2t2 − θt1t2) ; λ1, λ2, t1, t2 > 0; 0 < θ < λ1λ2,when c = 0.
(26)
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Proof. When equation (25) hold for i = 1, then using the equation (12) and
equation (13), we get

1− α r1(X; t1, t2)

∞∫
t1

(
F̄ (x1, t2)

)α
dx1(

F̄ (t1, t2)
)α = c r1(X; t1, t2),

or equivalently

1

r1(X; t1, t2)
= c+ α

∞∫
t1

(
F̄ (x1, t2)

)α
dx1(

F̄ (t1, t2)
)α . (27)

Differentiating equation (27) with respect to t1 and simplifying, we obtain

−1

(r1(X; t1, t2))
2

∂

∂t1
{r1(X; t1, t2)} = −αc r1(X; t1, t2).

∂

∂t1
{log (r1(X; t1, t2))} = αc r21(X; t1, t2). (28)

For simplification, we assume that log (r1(X; t1, t2)) = y1(t1, t2) ; that is, r1(X; t1, t2) =
ey1(t1,t2), then the equation (28) reduces to

∂

∂t1
{(y1(t1, t2))} = αc e2y1(t1,t2).

Integrating on both side with respect to t1, we get

r1(X; t1, t2) =
1√

K1(t2)− 2αc t1
.

Similarly for i = 2, we get

r2(X; t1, t2) =
1√

K2(t1)− 2αc t2
.

Hence

ri(X; t1, t2) =
1√

Ki(tj)− 2αc ti
, i ̸= j , i, j = 1, 2, (29)

where Ki(tj) > 0 is constant and independent of ti.
When c = 0, then from the equation (29), we get ri(X; t1, t2) = 1√

Ki(tj)
or

equivalently

− ∂

∂ti

{
log F̄ (t1, t2)

}
=

1√
Ki(tj)

.

Integrating both side with respect to ti, we get

−log F̄ (t1, t2) =
ti√
Ki(tj)

+ Qi(tj)

F̄ (t1, t2) = e
−
[

ti√
Ki(tj)

+Qi(tj)

]
, i ̸= j , i = 1, 2. (30)
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Applying for i = 1, 2 and equating (30) we get

t1√
K1(t2)

+ Q1(t2) =
t2√
K2(t1)

+ Q2(t1) (31)

As t1 → 0, equation (31) becomes

Q1(t2) =
t2√
K2(0)

+ Q2(0)

As t2 → 0, equation (31) becomes

Q2(t1) =
t1√
K1(0)

+ Q1(0)

Putting the value of Q1(t2) and Q2(t1) in the equation (31), we get

t1√
K1(t2)

+
t2√
K2(0)

+ Q2(0) =
t2√
K2(t1)

+
t1√
K1(0)

+ Q1(0) (32)

Since Q1(0) = Q2(0) = F̄ (0, 0), equation (31) become

1

t2
√
K1(t2)

− 1

t2
√
K1(0)

=
1

t1
√
K2(t1)

− 1

t1
√
K2(0)

= θ(say), (33)

which implies
1√

K1(t2)
= λ1 + θt2

Similarly, we get
1√

K2(t1)
= λ2 + θt1,

where 1√
K1(0)

= λ1 and 1√
K2(0)

= λ2. Substituting these value in the equation

(31), after simplification we get

F̄ (t1, t2) = exp (−λ1t1 − λ2t2 − θt1t2) .

The converse part is staightforward. �

3. New class of life distributions

In this section, we define a new class of life distributions based on proposed
bivariate dynamic cumulative residual Tsallis entropy (BDCRTE).

Definition 3.1. The distribution function F (t1, t2) is said to be increasing (de-
creasing) in Bivariate DCRTE, denoted by IBDCRTE (DBDCRTE), if ηiα(X; t1, t2)
is an increasing (decreasing) function of ti, i = 1, 2.

The following theorem gives the necessary and sufficient conditions for BD-
CRTE to be increasing(decreasing) BDCRTE.
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Theorem 3.2. The bivariate distribution function F (t1, t2) is increasing (de-
creasing) BDCRTE if and only if for all t1, t2 ≥ 0.

ηiα(X; t1, t2) ≥ (≤)
1

(α− 1)

(
1 − 1

α ri(t1, t2)

)
, i = 1, 2 ∀ α > 0 , α ̸= 1.

Proof. The proof of the theorem follows from equation (13) and (14). �
The following theorem provides lower bound of BDCRTE based on bivariate

mean residual life function.

Theorem 3.3. Let X = (X1, X2) be a non-negative random vector admitting
absolute continuous distribution function with respect to Lebesgue measure and
mi(t1, t2), i = 1, 2 are the components of the bivariate mean residual life function,
then

ηiα(X; t1, t2) ≥ 1

(α− 1)
(1 − mi(t1, t2) ) , i = 1, 2 , ∀ α > 0 , α ̸= 1.

Proof. We know that(
F̄ (t1, t2)

)α ≤ (≥) F̄ (t1, t2), ∀ ti > 0, i = 1, 2 , α > 1 (0 < α < 1).

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1 ≤ (≥)

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1 , α > 1 (0 < α < 1).

Case 1: When α > 1

1

(α− 1)

1 −
∞∫

t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1

 ≥ 1

(α− 1)

1 −
∞∫

t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1

 .

η1α(X; t1, t2) ≥ 1

(α− 1)
(1 − m1(t1, t2) ) .

Case 2: When 0 < α < 1

1

(1− α)

 ∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1 − 1

 ≥ 1

(1− α)

 ∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)
dx1 − 1

 .

η1α(X; t1, t2) ≥ 1

(α− 1)
(1 − m1(t1, t2) ) .

Thus

η1α(X; t1, t2) ≥ 1

(α− 1)
(1 − m1(t1, t2) ) ,∀ α > 0 , α ̸= 1.

Similar result holds for i = 2. Therefore, we have

ηiα(X; t1, t2) ≥ 1

(α− 1)
(1 − mi(t1, t2) ) , i = 1, 2 , ∀ α > 0 , α ̸= 1.

�
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We proposed the following theorem to obtain the bivariate hazard rate order-
ing based on BDCRTE.

Theorem 3.4. Let X = (X1, X2) and Y = (Y1, Y2) be two non-negative random
vector with survival functions F̄ (t1, t2) and Ḡ(t1, t2), and hazard rates rF (t1, t2)
and rG(t1, t2) respectively. If X≥hr Y , that is rF (t1, t2) ≤ rG(t1, t2), then

ηiα(X; t1, t2) ≤ (≥) ηiα(Y ; t1, t2) , ∀ α > 1 (0 < α < 1), i = 1, 2.

Proof. We know that rF (t1, t2) ≤ rG(t1, t2) which implies F̄ (t1, t2) ≥ Ḡ(t1, t2).
Therefore, we have for all α > 0

∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1 ≥
∞∫

t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α

dx1.

1−
∞∫

t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1 ≤ 1−
∞∫

t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α

dx1.

For α > 1

1

(α− 1)

1 −
∞∫

t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1

 ≤ 1

(α− 1)

1 −
∞∫

t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α

dx1


η1α(X; t1, t2) ≤ η1α(Y ; t1, t2).

For 0 < α < 1

1

(1− α)

 ∞∫
t1

(
F̄ (x1, t2)

F̄ (t1, t2)

)α

dx1 − 1

 ≥ 1

(1− α)

 ∞∫
t1

(
Ḡ(x1, t2)

Ḡ(t1, t2)

)α

dx1 − 1


η1α(X; t1, t2) ≥ η1α(Y ; t1, t2).

Thus,

η1α(X; t1, t2) ≤ (≥) η1α(Y ; t1, t2) , ∀ α > 1(0 < α < 1)

Similar result holds for i = 2. Therefore, we have

ηiα(X; t1, t2) ≤ (≥) ηiα(Y ; t1, t2) , ∀ α > 1(0 < α < 1), i = 1, 2.

�
Gupta and Sankaran [7] proposed the bivariate equilibrium distribution. Let

X = (X1, X2) be a bivariate positive random vector admitting an absolute con-
tinuous survival function F̄ (x1, x2). Then its bivariate equilibrium distribution
is the distribution of a random vector Y = (Y1, Y2) such that the density function
and survival function of (Yi|Yj > tj), i, j = 1, 2.i ̸= j are of the form:

gi(ti|Yj > tj) =
P (Xi > ti|Xj > tj)

E(Xi|Xj > tj)
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=
F̄ (t1, t2)

F̄j(tj)E(Xi|Xj > tj)
, i ̸= j; i, j = 1, 2 (34)

and

Ḡi(ti|Yj > tj) =

∞∫
ti

gi(u|Yj > tj)du

=
F̄ (t1, t2)mi(t1, t2)

F̄j(tj)E(Xi|Xj > tj)
, i ̸= j; i, j = 1, 2, (35)

respectively, for t1, t2 ≥ 0.

Remark 3.1. The residual Tsallis entropy can be expressed for the bivariate
random vector X = (X1, X2) as follows:

Hα(X; t1, t2) = (H1α(X; t1, t2) , H2α(X; t1, t2) ) ,

where

Hiα(X; t1, t2) =
1

(α− 1)

1−
∞∫

ti

(
fi(xi|Xj > tj)

F̄i(ti|Xj > tj)

)α

dxi

, i, j = 1, 2, i ̸= j .

In the following theorem we establish a relation between BDCRTE and resid-
ual Tsallis entropy corresponding to the bivariate equilibrium random vector
Y = (Y1, Y2).

Theorem 3.5. Let X = (X1, X2) be a non-negative random vector and Y =
(Y1, Y2) be the equilibrium random vector associate with X, then

Hiα(Y ; t1, t2) =
ηiα(X; t1, t2)

mα
i (t1, t2)

+
1− m−α

i (t1, t2)

(α− 1)
, i = 1, 2, ∀α > 0 , α ̸= 1,

(36)

where Hiα(Y ; t1, t2) denote the bivariate residual Tsallis entropy corresponding
to Y and mi(t1, t2), i = 1, 2 are the components of the bivariate mean residual
life function.

Proof. When the equation (36) holds for i = 1, we have

H1α(Y ; t1, t2) =
1

(α− 1)

1−
∞∫

t1

(
g1(y1|Y2 > t2)

Ḡ1(t1|Y2 > t2)

)α

dy1

.
Applying the results of the equations (34) and (35), we get

H1α(Y ; t1, t2) =
η1α(X; t1, t2)

mα
1 (t1, t2)

+
1− m−α

1 (t1, t2)

(α− 1)
.
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Similar result holds for i = 2. Therefore, we have

Hiα(Y ; t1, t2) =
ηiα(X; t1, t2)

mα
i (t1, t2)

+
1− m−α

i (t1, t2)

(α− 1)
, i = 1, 2, ∀α > 0 , α ̸= 1.

�
Cox (1972) introduced the concept of proportional hazards model (PHM). Let

X and Xθ be two continuous random variables with survival functions F̄X(x)
and F̄Xθ

(x), respectively. The relation between survival functions of random life
times is given by

F̄Xθ
(x) =

[
F̄X(x)

]θ
, x ∈ R , θ > 0.

The following lemma compares the DCRTE of X and Xθ.

Lemma 3.6. The following statement holds:

(a) ηα(Xθ; t) ≥ ηα(X; t) for θ ≥ 1 , α > 1 and θ ≤ 1 , 0 < α < 1.
(b) ηα(Xθ; t) ≤ ηα(X; t) for θ ≥ 1 , 0 < α < 1 and θ ≤ 1 , α > 1.

The proof of the lemma is straightforward.

4. Conclusion

The definition of dynamic cumulative residual Tsallis entropy (DCRTE) have
been extended to bivariate setup consequently proposed the Bivariate DCRTE.
The monotonic behaviour in the context of bivariate random vector has also been
studied. Some well known bivariate life time distributions are characterized.
Additionally, we have defined some a new class of life distributions based on
BDCRTE.
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