• Title/Summary/Keyword: Entropy threshold

Search Result 54, Processing Time 0.022 seconds

Prediction of present and future distribution of the Schlegel's Japanese gecko (Gekko japonicus) using MaxEnt modeling

  • Kim, Dae-In;Park, Il-Kook;Bae, So-Yeon;Fong, Jonathan J.;Zhang, Yong-Pu;Li, Shu-Ran;Ota, Hidetoshi;Kim, Jong-Sun;Park, Daesik
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Background: Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel's Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model. Results: Present time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea. Conclusions: Suitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.

(Image Analysis of Electrophoresis Gels by using Region Growing with Multiple Peaks) (다중 피크의 영역 성장 기법에 의한 전기영동 젤의 영상 분석)

  • 김영원;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.444-453
    • /
    • 2003
  • Recently, a great interest of bio-technology(BT) is concentrated and the image analysis technique for electrophoresis gels is highly requested to analyze genetic information or to look for some new bio-activation materials. For this purpose, the location and quantity of each band in a lane should be measured. In most of existing techniques, the approach of peak searching in a profile of a lane is used. But this peak is improper as the representative of a band, because its location does not correspond to that of the brightest pixel or the center of gravity. Also, it is improper to measure band quantity in most of these approaches because various enhancement processes are commonly applied to original images to extract peaks easily. In this paper, we adopt an approach to measure accumulated brightness as a band quantity in each band region, which Is extracted by not using any process of changing relative brightness, and the gravity center of the region is calculated as a band location. Actually, we first extract lanes with an entropy-based threshold calculated on a gel-image histogram. And then, three other methods are proposed and applied to extract bands. In the MER method, peaks and valleys are searched on a vertical search line by which each lane is bisected. And the minimum enclosing rectangle of each band is set between successive two valleys. On the other hand, in the RG-1 method, each band is extracted by using region growing with a peak as a seed, separating overlapped neighbor bands. In the RG-2 method, peaks and valleys are searched on two vertical lines by which each lane is trisected, and the left and right peaks nay be paired up if they seem to belong to the same band, and then each band region is grown up with a peak or both peaks if exist. To compare above three methods, we have measured the location and amount of bands. As a result, the average errors in band location of MER, RG-1, and RG-2 were 6%, 3%, and 1%, respectively, when the lane length is normalized to a unit value. And the average errors in band amount were 8%, 5%, and 2%, respectively, when the sum of band amount is normalized to a unit value. In conclusion, RG-2 was shown to be more reliable in the accuracy of measuring the location and amount of bands.

A Management Plan According to the Estimation of Nutria (Myocastorcoypus) Distribution Density and Potential Suitable Habitat (뉴트리아(Myocastor coypus) 분포밀도 및 잠재적 서식가능지역 예측에 따른 관리방향)

  • Kim, Areum;Kim, Young-Chae;Lee, Do-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • The purpose of this study is to estimate the concentrated distribution area of nutria (Myocastor coypus) and potential suitable habitat and to provide useful data for the effective management direction setting. Based on the nationwide distribution data of nutria, the cross-validation value was applied to analyze the distribution density. As a result, the concentrated distribution areas thatrequired preferential elimination is found in 14 administrative areas including Busan Metropolitan City, Daegu Metropolitan City, 11 cities and counties in Gyeongsangnam-do and 1 county in Gyeongsangbuk-do. In the potential suitable habitat estimation using a MaxEnt (Maximum Entropy) model, the possibility of emergency was found in the Nakdong River middle and lower stream area and the Seomjin riverlower stream area and Gahwacheon River area. As for the contribution by variables of a model, it showed DEM, precipitation of driest month, min temperature of coldest month and distance from river had contribution from the highest order. In terms of the relation with the probability of appearance, the probability of emergence was higher than the threshold value in areas with less than 34m of altitude, with $-5.7^{\circ}C{\sim}-0.6^{\circ}C$ of min temperature of the coldest month, with 15-30mm of precipitation of the driest month and with less than 1,373m away from the river. Variables that Altitude, existence of water and wintertemperature affected settlement and expansion of nutria, considering the research results and the physiological and ecological characteristics of nutria. Therefore, it is necessary to reflect them as important variables in the future habitable area detection and expansion estimation modeling. It must be essential to distinguish the concentrated distribution area and the management area of invasive alien species such as nutria and to establish and apply a suitable management strategy to the management site for the permanent control. The results in this study can be used as useful data for a strategic management such as rapid management on the preferential management area and preemptive and preventive management on the possible spreading area.

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS (충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구)

  • 이수진;석동우;황종선;이동천;김정우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.363-368
    • /
    • 2003
  • We have successfully developed a more effective algorithm to extract the lineament in the area covered by wide alluvial deposits characterized by a relatively narrow range of brightness in the Landsat TM image, while the currently used algorithm is limited to the mountainous areas. In the new algorithm, flat areas mainly consisting of alluvial deposits were selected using the Local Enhancement from the Digital Elevation Model (DEM). The aspect values were obtained by 3${\times}$3 moving windowing of Zevenbergen & Thorno's Method, and then the slopes of the study area were determined using the aspect values. After the lineament factors in the alluvial deposits were revealed by comparing the threshold values, the first rank lineament under the alluvial deposits were extracted using the Hough transform In order to extract the final lineament, the lowest points under the alluvial deposits in a given topographic section perpendicular to the first rank lineament were determined through the spline interpolation, and then the final lineament were chosen through Hough transform using the lowest points. The algorithm developed in this study enables us to observe a clearer lineament in the areas covered by much larger alluvial deposits compared with the results extracted using the conventional existing algorithm. There exists, however, some differences between the first rank lineament, obtained using the aspect and the slope, and the final lineament. This study shows that the new algorithm more effectively extracts the lineament in the area covered with wide alluvlal deposits than in the areas of converging slope, areas with narrow alluvial deposits or valleys.

  • PDF