• Title/Summary/Keyword: Entropy model

Search Result 489, Processing Time 0.02 seconds

Context-based Predictive Coding Scheme for Lossless Image Compression (무손실 영상 압축을 위한 컨텍스트 기반 적응적 예측 부호화 방법)

  • Kim, Jongho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.183-189
    • /
    • 2013
  • This paper proposes a novel lossless image compression scheme composed of direction-adaptive prediction and context-based entropy coding. In the prediction stage, we analyze the directional property with respect to the current coding pixel and select an appropriate prediction pixel. In order to further reduce the prediction error, we propose a prediction error compensation technique based on the context model defined by the activities and directional properties of neighboring pixels. The proposed scheme applies a context-based Golomb-Rice coding as the entropy coding since the coding efficiency can be improved by using the conditional entropy from the viewpoint of the information theory. Experimental results indicate that the proposed lossless image compression scheme outperforms the low complexity and high efficient JPEG-LS in terms of the coding efficiency by 1.3% on average for various test images, specifically for the images with a remarkable direction the proposed scheme shows better results.

How Can We Erase States Inside a Black Hole?

  • Hwang, Junha;Park, Hyosub;Yeom, Dong-han;Zoe, Heeseung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1420-1430
    • /
    • 2018
  • We investigate an entangled system, which is analogous to a composite system of a black hole and Hawking radiation. If Hawking radiation is well approximated by an outgoing particle generated from pair creation around the black hole, such a pair creation increases the total number of states. There should be a unitary mechanism to reduce the number of states inside the horizon for black hole evaporation. Because the infalling antiparticle has negative energy, as long as the infalling antiparticle finds its partner such that the two particles form a separable state, one can trace out such a zero energy system by maintaining unitarity. In this paper, based on some toy model calculations, we show that such a unitary tracing-out process is only possible before the Page time while it is impossible after the Page time. Hence, after the Page time, if we assume that the process is unitary and the Hawking pair forms a separable state, the internal number of states will monotonically increase, which is supported by the Almheiri-Marolf-Polchinski-Sully (AMPS) argument. In addition, the Hawking particles cannot generate randomness of the entire system; hence, the entanglement entropy cannot reach its maximum. Based on these results, we modify the correct form of the Page curve for the remnant picture. The most important conclusion is this: if we assume unitarity, semi-classical quantum field theory, and general relativity, then the black hole should violate the Bekenstein-Hawking entropy bound around the Page time at the latest; hence, the infinite production arguments for remnants might be applied for semi-classical black holes, which seems very problematic.

A Method for the Classification of Water Pollutants using Machine Learning Model with Swimming Activities Videos of Caenorhabditis elegans (예쁜꼬마선충의 수영 행동 영상과 기계학습 모델을 이용한 수질 오염 물질 구분 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.903-909
    • /
    • 2021
  • Caenorhabditis elegans whose DNA sequence was completely identified is a representative species used in various research fields such as gene functional analysis and animal behavioral research. In the mean time, many researches on the bio-monitoring system to determine whether water is contaminated or not by using the swimming activities of nematodes. In this paper, we show the possibility of using the swimming activities of C. elegans in the development of a machine learning based bio-monitoring system which identifies chemicals that cause water pollution. To characterize swimming activities of nematode, BLS entropy is computed for the nematode in a frame. And, BLS entropy profile, an assembly of entropies, are classified into several patterns using clustering algorithms. Finally these patterns are used to construct data sets. We recorded images of swimming behavior of nematodes in the arenas in which formaldehyde, benzene and toluene were added at a concentration of 0.1 ppm, respectively, and evaluate the performance of the developed HMM.

Private Equity Valuation under Model Uncertainty

  • BIAN, Yuxiang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • The study incorporates model uncertainty into the private equity (PE) valuation model (SWY model) (Sorensen et al., 2014) to evaluate how model uncertainty distorts the leverage and valuations of PE funds. This study applies a continuous-time model to PE project valuation, modeling the LPs' goal as multiplier preferences provided by Anderson et al. (2003), and assuming that LPs' aversion to model uncertainty causes endogenous belief distortions with entropy as a measure of model discrepancies. Concerns regarding model uncertainty, according to the theoretical model, have an unclear effect on LPs' risk attitude and GPs' decision, which is based on the value of the PE asset. It also demonstrates that model uncertainty lowers the certainty-equivalent valuation of the LPs. Finally, we compare the outcomes of the Full-spanning risk model with the Non-spanned risk model, and they match the intuitive economic reasoning. The most important implication is that model uncertainty will have negative effects on the LPs' certainty-equivalent valuation but has ambiguous effects on the portfolio allocation choice of liquid wealth. Our works contribute to two literature streams. The first is the literature that models the PE funds. The second is the literature introduces model uncertainty into standard finance models.

Development of an Efficient Solution Method for the Wilson's Trip Distribution Model (엔트로피 극대화 통행배분모형의 효율적 해법 개발)

  • 노정현
    • Journal of Korean Society of Transportation
    • /
    • v.9 no.2
    • /
    • pp.121-126
    • /
    • 1991
  • Wilson made an importent contribution to develop a trip distribution model with the general form of gravity model which is an entropy maximization program. Also Wilson suggested a technique which is called the "iterative balancing method" for soving the model. This te-chnique however is not stable to find solution because it is a heuristic method and sometimes does not converge to the correct solution. In this paper a new solution method using a numerical method for solving the non-linear simultaneous equation system is developed and evaluated in both computers VAX 8700 and PC/AT 286 The result of this method and Wilson's method are compared with each other. Wilson's method resulted in inferior solutions measured by the final norm of residuals.

  • PDF

Preparation of Al2O3-ZrO2 Composite Powders by the Use of Emulsions: I. Thermodynamic Model of the Emulsion Stability (에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : I. 에멀젼 안정화에 대한 열역학적 모델)

  • 한상훈;백종규;송승룡
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.593-601
    • /
    • 1987
  • A thermodynamic model to predict the stability of the water-in-oil type emulsion and the size of the droplets in stable emulsions was developed. Using this model, the effects of various factors government the droplet size in the metal salt solution-kerosene-span 80 system for the preparation of Al2O3-ZrO2 composite powders were investigated. It was shown that the given emulsion systems were thermodynamically unstable in every case but could be kinetically meta stable. When radius ofthe droplet was below nm, the increase in entropy change due to the configurational contribution of small droplets dominated the total free energy change for emulsification. The optimum conditions under which smaller deoplet was obtained were proposed and the validity of the model was proved with diameters of the droplet and composite powders experimentally determined.

  • PDF

A Study on the Application of Ecological Structural Dynamic Modelling (생태 모델링기법으로서 동적구조모형의 고찰)

  • Kim, Jwa-Kwan
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.4
    • /
    • pp.213-222
    • /
    • 2004
  • Exergy is defined as the amount of work (entropy-free energy) a system can perform when it is brought into thermodynamic equilibrium with its environment. Exergy measures the distance from the inorganic soup in energy terms. Therefore, exergy can be considered as fuel for any system that converts energy and matter in a metabolic process. The aim of this study is to introduce structural dynamic modelling which is based on maximum exergy principle. Especially, almost ecological models couldn't explain algal succession until now. New model (structural dynamic model) is anticipated to predict or explain the succession theory. If the new concept using maximum exergy principle is used, algal succession can be explained in many actual cases. Therefore, It is estimated that structural dynamic model using maximum exergy principle might be a excellent tool to understand succession of nature from now on.

A Study on measuring techniques of retrieval effectiveness (검색효율 측정척도에 관한 연구)

  • Yoon Koo Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.16
    • /
    • pp.177-205
    • /
    • 1989
  • Retrieval effectiveness is the principal criteria for measuring the performance of an information retrieval system. This paper deals with the characteristics of 'relevance' of information and various measuring techniques of retrieval effectivess. The outlines of this study are as follows: 1) Relevance decision for evaluation should be devided into the user-oriented and the system-oriented decisions. 2) The recall-precision measure seems to be user-oriented, and the recall-fallout measure to be system-oriented. 3) Many of composite measures can not be justified III any rational manner unfortunately. 4) The Swets model has demonstrated that it yields, in general, a straight line instead of a curve of varying curvature and emphasized the fundamentally probabilistic nature of information retrieval. 5) The Cooper model seems to be a good substitute for precision and a useful measure for systems which ranked documents. 6) The Rocchio model were proposed for the evaluation of retreval systems which ranked documents, and were designed to be independent of cut-off. 7) The Cawkell model suggested that the Shannon's equation for entropy can be applied to measuring of retrieval effectiveness.

  • PDF

ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY

  • Cao, Jiling;Peng, Beidi;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1153-1170
    • /
    • 2022
  • In this paper, we investigate the portfolio optimization problem under the SVCEV model, which is a hybrid model of constant elasticity of variance (CEV) and stochastic volatility, by taking into account of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB) equation is derived and the first two orders of optimal strategies are obtained by utilizing an asymptotic approximation approach. We also derive the first two orders of practical optimal strategies by knowing that the underlying Ornstein-Uhlenbeck process is not observable. Finally, we conduct numerical experiments and sensitivity analysis on the leading optimal strategy and the first correction term with respect to various values of the model parameters.

Reduction of Air-pumping Noise based on a Genetic Algorithm (유전자 알고리즘을 이용한 타이어 공력소음의 저감)

  • Kim, Eui-Youl;Hwang, Sung-Wook;Kim, Byung-Hyun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-73
    • /
    • 2012
  • The paper presents the novel approach to solve some problems occurred in application of the genetic algorithm to the determination of the optimal tire pattern sequence in order to reduce the tire air-pumping noise which is generated by the repeated compression and expansion of the air cavity between tire pattern and road surface. The genetic algorithm has been used to find the optimal tire pattern sequence having a low level of tire air-pumping noise using the image based air-pumping model. In the genetic algorithm used in the previous researches, there are some problems in the encoding structure and the selection of objective function. The paper proposed single encoding element with five integers, divergent objective function based on evolutionary process and the optimal evolutionary rate based on Shannon entropy to solve the problems. The results of the proposed genetic algorithm with evolutionary process are compared with those of the randomized algorithm without evolutionary process on the two-dimensional normal distribution. It is confirmed that the genetic algorithm is more effective to reduce the peak value of the predicted tire air-pumping noise and the consistency and cohesion of the obtained simulation results are also improved in terms of probability.