• Title/Summary/Keyword: Entropy Mode

Search Result 43, Processing Time 0.017 seconds

Study on Transport Policy Assessment Using the Integrated Land Use Transport Model (통합 토지이용 교통모형을 이용한 교통정책평가에 관한 연구 I: 기존사례연구를 중심으로)

  • Lee, Seung-Jae;Sohn, Jhi-Eon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2010
  • The policy which encourages people to use cars on the road has been based on the growth of economy in Korea. It has also caused the concentration and overcrowding in Seoul. That's because the increasing number of people possessing cars interconnects with the urban development. The transportation is a derived demand; so many scholars have recognized the importance of understanding the relationship between urban land use and transport. Considering such importance, this study theoretically compared the developed urban land use-transportation models each other and outlined the particular models briefly. Models were categorized by 2 types; optimizing model and predictive mode. Predictive model is also defined by static model, entropy based model, spatial-economic model, and activity model. After studying models, we investigated other major cities in America. This process is the pre-step for transport policy assessment. Through careful literature review, we can finally develop the integrated land-use transportation model in Seoul metropolitan area. In addition, we will be able to deal the changes of traffic demand pattern under U-Society. Consequently, the results of this study can be applied to ITS projects in the future.

Thermotropic Liquid Crystalline Behavior of Poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s (폴리[1-{4-{4'-시아노페닐아조)펜옥시알킬옥시}에틸렌]들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Lee, Jae-Yoon;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.297-306
    • /
    • 2009
  • A homologous series of side chain liquid crystalline polymers, poly [1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s(CAPETn, where n, the number of methylene units in the spacer, is $2{\sim}10$) were synthesized from poly(vinyl alcohol) and 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides(CAPBn, n=$2{\sim}10$), and their thermotropic liquid crystalline phase behaviors were investigated. The CAPBn with n of $2{\sim}5$ did not show any liquid crystalline behavior, while those with n of 6 and $7{\sim}10$ showed enantiotropic and monotropic nematic phases, respectively. In contrast, among the CAPETn polymers, only CAPET5 exhibited an enantiotropic nematic phase, while other polymers showed monotropic nematic phases. The isotropic-nematic transition temperatures of CAPETns and their entropy variation at the phase transition that were higher values than those of CAPBns, demonstrated a typical odd-even effect as a function of n. These phase transition behaviors were disscussed in terms of the 'virtual trimer model' by Imrie. The mesophase properties of CAPETns were largely different from those reported for the polymers in which the (cyanophenylazo) phenoxy groups are attached to polyacrylate, polymethacrylate, and polystyrene backbones through polymethylene spacers. The results indicate that the mode of chemical linkage of the side group with the main chain plays an important role in the formation, stabilization, and type of mesophase.

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.