• 제목/요약/키워드: Ensiling Characteristics

검색결과 70건 처리시간 0.03초

The Effects of Two Inoculants Applied to Forage Sorghum at Ensiling on Silage Characteristics

  • Guan, Wu-tai;Ashbell, G.;Hen, Y.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권2호
    • /
    • pp.218-221
    • /
    • 2002
  • Whole forage sorghum (saccharatum) cultivar FS5 was harvested at the soft dough ($303{\pm}9g\;kg^{-1}$ DM) stage of maturity. The sorghum was chopped into approximately 20 mm pieces and ensiled under laboratory conditions in 1.5 L Weck glass jars. At ensiling, it was treated with two commercial silage inoculants: Pioneer 1188 (Inoculant A) and Eco-corn (Inoculant B). The inoculant A and B was applied at ca $2{\times}10^5$ or $2{\times}10^4$ colony forming units $g^{-1}$ DM., respectively. Silage with no additives served as a control. Three jars per treatment were opened on days 2, 4, 8, 15 and 60 post-ensiling to study fermentation dynamics. After 60 days of ensiling the silages were analyzed and subjected to an aerobic stability test lasting 5 days. Results showed that both inoculants caused a more rapid rate of pH decrease and a higher amount of lactic acid production. All the silages were well preserved and were stable upon exposure to air. Inoculants did not influence (p>0.05) the ash and total N contents, but tended to reduce acetic acid (p<0.05), butyric acid (p<0.01) and propionic acid (p<0.01) contents, and to increase the lactic acid content (p<0.01). The lower DM content of silages treated with Inoculant A agrees with the greater gas loss resulting from the DM loss, which was in good agreement with the higher yeast counts upon aerobic exposure. Silage treated with inoculant B had the highest DM (p<0.05) and lactic acid contents (p<0.01), and the lowest acetic acid content (p<0.05), which agrees with the rapid reduction of pH and smaller gas loss. Inoculant B reduced the ADF (p<0.01), ADL and NDF (p<0.05) contents, which also indicates smaller losses of organic soluble material. The control silages contained the highest levels of volatile fatty acids but no lactic acid, indicating secondary fermentation. It was concluded that both inoculants may improve the fermentation process, since silages from all treatments were stable upon aerobic exposure, noadvantage could be attributed to any of the inoculants used.

Evaluation of forage production, feed value, and ensilability of proso millet (Panicum miliaceum L.)

  • Wei, Sheng Nan;Jeong, Eun Chan;Li, Yan Fen;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.38-51
    • /
    • 2022
  • Whole-plant corn (Zea may L.) and sorghum-sudangrass hybrid [Sorghum bicolor (L.) Moench] are major summer crops that can be fed as direct-cut or silage. Proso millet is a short-season growing crop with distinct agronomic characteristics that can be productive in marginal lands. However, information is limited about the potential production, feed value, and ensilability of proso millet forage. We evaluated proso millet as a silage crop in comparison with conventional silage crops. Proso millet was sown on June 8 and harvested on September 5 at soft-dough stage. Corn and sorghum-sudangrass hybrid were planted on May 10 and harvested on September 10 at the half milk-line and soft-dough stages, respectively. The fermentation was evaluated at 1, 2, 3, 5, 10, 15, 20, 30, and 45 days after ensiling. Although forage yield of proso millet was lower than corn and sorghum-sudangrass hybrid, its relative feed value was greater than sorghum-sudangrass hybrid. Concentrations of dry matter (DM), crude protein, and water-soluble carbohydrate decreased commonly in the ensiling forage crops. The DM loss was greater in proso millet than those in corn and sorghum-sudangrass hybrid. The in vitro dry matter digestibility declined in the forage crops as fermentation progressed. In the early stages of fermentation, pH dropped rapidly, which was stabilized in the later stages. Compared to corn and sorghum-sudangrass hybrid, the concentration of ammonia-nitrogen was greater in proso millet. The count of lactic acid bacteria reached the maximum level on day 10, with the values of 6.96, 7.77, and 6.95 Log10 CFU/g fresh weight for proso millet, corn, and sorghum-sudangrass hybrid, respectively. As ensiling progressed, the concentrations of lactic acid and acetic acid of the three crops increased and lactic acid proportion became higher in the order of sorghum-sudangrass hybrid, corn, and proso millet. Overall, the shorter, fast-growing proso millet comparing with corn and sorghum-sudangrass hybrid makes this forage crop an alternative option, particularly in areas where agricultural inputs are limited. However, additional research is needed to evaluate the efficacy of viable strategies such as chemical additives or microbial inoculants to minimize ammonia-nitrogen formation and DM loss during ensiling.

EFFECT OF ENVIRONMENTAL TEMPERATURE AND ADDITION OF MOLASSES ON THE QUALITY OF NAPIER GRASS (PENNISETUM PURPUREUM SCHUM.) SILAGE

  • Yokota, H.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권4호
    • /
    • pp.377-382
    • /
    • 1991
  • The effect of molasses addition and hot temperature on the ensiling characteristics of napier grass (Pennisetum purpureum Schum.) were studied. Napier grass was harvested five times at intervals from 22 to 39 days and each harvest was divided into two equal portions. The half portion was ensiled directly and the other half was ensiled after mixing with molasses into polyethylene bag silos of 15 kg capacity. Molasses was added at the rate of 4% of fresh weight of the grass. One half of the each treatment was conserved at a room of $40^{\circ}C$ for a month and then moved to an ambient temperature room. The other half was kept at ambient temperature for the whole experimental duration. The silages were opened 3 to 7 months after ensiling. Addition of molasses enhanced lactic acid fermentation by increasing lactic acid content and reducing pH value, ammonia nitrogen and acetic, propionic and butyric acid contents of the silages in both temperature treatments. Enhanced temperature increased pH value and decreased acetic, propionic and butyric acids.

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Kondo, Makoto;Hirano, Yoshiaki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.937-945
    • /
    • 2014
  • Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

Comparative Study on the Effects of Combined Treatments of Lactic Acid Bacteria and Cellulases on the Fermentation Characteristic and Chemical Composition of Rhodesgrass (Chloris gayana Kunth.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.525-530
    • /
    • 1999
  • Prior to ensiling Rhodesgrass (RG) and Italian ryegrass (lRG) were treated with lactic acid bacteria (LAB) or with LAB+cellulases to compare their fermentation characteristics and chemical compositions. LAB (Lactobacillus casei) was added to all ensiling materials (except the untreated control) of RG and IRG at a concentration of $1.0{\times}10^5\;cfu.g^{-1}$ fresh forage. The enzymes used were Acremoniumcellulase (A), Meicelase (M) or a mixture of both (AM). Each enzyme was applied at levels of 0.005, 0.01 and 0.02 % of fresh forage. The silages with each treatment were incubated at 20, 30 and $40^{\circ}C$ and stored for about 2 months. While no marked differences were found between the RG and IRG silages with various treatments on dry matter (DM), volatile basic nitrogen (VBN) and water soluble carbohydrate (WSC) contents, there were significant differences in pH value, and lactic acid and butyric acid contents. LAB inoculation did not affect the fermentation characteristics of either the RG or IRG silages. The combined treatments of LAB+cellulases improved the fermentation quality of both the RG and IRG silages as evidenced by the decrease in pH value and increase in lactic acid content. Increasing the amount of added cellulase resulted in a decrease in pH value and an increase in lactic acid content in both the RG and IRG silages. Cellulases A and AM had a greater effect than cellulase M on the fermentation quality of the RG and IRG silages. Incubation temperatures of 30 and $40^{\circ}C$ appeared to be more appropriate environments for stimulating good fermentation than $20^{\circ}C$.

Influence of microbial additive on microbial populations, ensiling characteristics, and spoilage loss of delayed sealing silage of Napier grass

  • Cai, Yimin;Du, Zhumei;Yamasaki, Seishi;Nguluve, Damiao;Tinga, Benedito;Macome, Felicidade;Oya, Tetsuji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권7호
    • /
    • pp.1103-1112
    • /
    • 2020
  • Objective: To measure whether a microbial additive could effectively improve the fermentation quality of delayed-sealing (DS) silage, we studied the effects of inoculants of lactic acid bacteria (LAB) and cellulase enzyme on microbial populations, ensiling characteristics, and spoilage loss of DS silage of Napier grass in Africa. Methods: Quick-sealing (QS) and DS silages were prepared with and without LAB (Lactobacillus plantarum) inoculant, cellulase enzymes, and their combination. The QS material was directly chopped and packed into a bunker silo. The DS material was packed into the silo with a delay of 24 h from harvest. Results: In the QS silage, LAB was dominant in the microbial population and produced large amounts of lactic acid. When the silage was treated with LAB and cellulase, the fermentation quality was improved. In the DS silage, aerobic bacteria and yeasts were the dominant microbes and all the silages were of poor quality. The yeast and mold counts in the DS silage were high, and they increased rapidly during aerobic exposure. As a result, the DS silages spoiled faster than the QS silages upon aerobic exposure. Conclusion: DS results in poor silage fermentation and aerobic deterioration. The microbial additive improved QS silage fermentation but was not effective for DS silage.

Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage

  • Wang, Huili;Hao, Wei;Ning, Tingting;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권2호
    • /
    • pp.198-207
    • /
    • 2018
  • Objective: This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Methods: Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance) of the yeast species and their role during aerobic deterioration were investigated. Results: In addition to species of Candida glabrata and Pichia kudriavzevii (P. kudriavzevii) previously isolated in WCC and TMR, Pichia manshurica (P. manshurica), Candida ethanolica (C. ethanolica), and Zygosaccharomyces bailii (Z. bailii) isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d). With ensiling prolonged to 28 d, silages became more (p<0.01) stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d) were not observed in both WCC and WCC silages. Conclusion: The inhibition of yeasts, particularly P. kudriavzevii, probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant yeast species during aerobic deterioration of TMR silages.

Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage

  • Zhao, Guoqiang;Wu, Hao;Li, Li;He, Jiajun;Hu, Zhichao;Yang, Xinjian;Xie, Xiangxue
    • Journal of Animal Science and Technology
    • /
    • 제63권6호
    • /
    • pp.1301-1313
    • /
    • 2021
  • This study investigated the effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass silage after ensiling for 30 d. Three groups were studied: No additives (control); added cellulase (Group 1); and added cellulase and starch (Group 2). The results showed that the addition of cellulase and starch decreased the crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and pH significantly (p < 0.05) and increased water-soluble carbohydrate (WSC) content (p < 0.05). The addition of additives in two treated groups exerted a positive effect on the lactic acid (LA) content, lactic acid bacteria (LAB) population, and lactic acid / acetic acid (LA/AA) ratio, even the changes were not significant (p > 0.05). Calculation of Flieg's scores indicated that cellulase application increased silage quality to some extent, while the application of cellulase and starch together significantly improved fermentation (p < 0.05). Compared with the control, both additive groups showed increased microbial diversity after ensiling with an abundance of favorable bacteria including Firmicutes and Weissella, and the bacteria including Proteobacteria, Bacteroidetes, Acinetobacter increased as well. For alpha diversity analysis, the combined application of cellulase and starch in Group 2 gave significant increases in all indices (p < 0.05). The study demonstrated that the application of cellulase and starch can increase the quality of Napier grass preserved as silage.

Effects of whole-plant corn and hairy vetch (Vicia villosa Roth) mixture on silage quality and microbial communities

  • Yaqian Zong;Kai Zhou;Xinhui Duan;Bo Han;Hua Jiang;Chenggang He
    • Animal Bioscience
    • /
    • 제36권12호
    • /
    • pp.1842-1852
    • /
    • 2023
  • Objective: Hairy vetch is considered to improve the nutritional value of corn because of its high protein and mineral levels. To better understand the mechanism underlying hairy vetch regulated whole-plant corn silage fermentation, this experiment investigated the fermentation quality and bacterial community of whole-plant corn and hairy vetch mixture. Methods: Whole-plant corn and hairy vetch were mixed at ratios of 10:0 (Mix 10:0), 8:2 (Mix 8:2), 6:4 (Mix 6:4), 4:6 (Mix 4:6), 2:8 (Mix 2:8), and 0:10 (Mix 0:10) on a fresh weight basis. After ensiling 60 days, samples were collected to examine the fermentation dynamics, ensiling characteristics, and bacterial communities. Results: Mix 0:10, Mix 2:8, and Mix 4:6 showed poor fermentation characteristics. Mix 8:2 and Mix 6:4 silages showed high quality, based on the low pH, acetic acid, and ammonia nitrogen levels and the high lactic acid, crude protein, and crude fat contents. The bacterial diversity was affected by the mixing ratio of the two forage species. The genus Lactobacillus dominated the bacterial community in Mix 10:0 silage, whereas with the addition of hairy vetch, the relative abundance of unclassified-Enterobacter increased from 7.67% to 41.84%, and the abundance of Lactobacillus decreased from 50.66% to 13.76%. Conclusion: The silage quality of whole-plant corn can be improved with inclusion levels of hairy vetch from 20% to 40%.

Effects of Microbial Inoculants on the Fermentation, Nutrient Retention, and Aerobic Stability of Barley Silage

  • Zahiroddini, H.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1429-1436
    • /
    • 2006
  • Fermentation characteristics, nutrient retention and aerobic stability of barley silages prepared using 6 commercial inoculants were evaluated using 126 mini-silos (3-L) in a completely randomized design. Whole barley forage was chopped, wilted to 39% DM and treated with water (control, S) or one of six inoculants: A (containing Lactobacillus plantarum); B (L. plantarum and Enterococcus faecium); C (L. plantarum and Pediococcus cerevisiae); D (L. plantarum, Pediococcus pentosaceus and Propionibacterium freudenreichii, plus hydrolytic enzymes); E (Lactobacillus buchneri plus hydrolytic enzymes); F (L. buchneri and P. pentosaceus plus hydrolytic enzymes). Samples of treated forage were collected for analysis at the time of ensiling, and then 18 silos of each treatment were filled, capped and weighed. Triplicate silos were weighed and opened after 1, 3, 5, 7, 33, and 61 d. On d 61, $400{\pm}5g$ of material from each silo was placed in 1-L styrofoam containers, covered with cheesecloth and held at room temperature. Silage temperature was recorded hourly for 14 d via implanted thermocouple probes. Chemical composition of the forage at ensiling was consistent with previously reported values. At d 61, pH was lowest (p<0.01) in silage S. Ammonia-N was lower (p<0.05) in silage A than in silages S, B, E, or F. Compared to pre-ensiling values, water soluble carbohydrate concentrations were elevated in silages S, A, B, C and D, and decreased in E and F. Lactic acid concentrations were similar (p>0.10) across treatments. Acetic acid levels were highest (p<0.01) in silage E and lowest (p<0.01) in silage D. Recovery of DM was lower (p<0.01) in silage F than in silages S, A, B, C, or D. On d 61, yeasts were most numerous (p<0.01) in silage D, which was the only silage in which temperature rose more than $2^{\circ}C$ above ambient during aerobic exposure. Silage D also had the highest (p<0.01) pH and ADIN content after aerobic exposure. Lactic acid and WSC content of silage D decreased dramatically during the 14-d aerobic exposure period. Yeast counts (at d 14 of exposure) were lowest (p<0.01) in silages E and F. In general, the commercial inoculants did not appear to enhance the fermentation of barley silage to any appreciable extent in laboratory silos.