DOI QR코드

DOI QR Code

Effects of Microbial Inoculants on the Fermentation, Nutrient Retention, and Aerobic Stability of Barley Silage

  • Zahiroddini, H. (Alberta Agriculture, Food and Rural Development, Agriculture Centre) ;
  • Baah, J. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • McAllister, T.A. (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
  • Received : 2005.10.27
  • Accepted : 2006.03.07
  • Published : 2006.10.01

Abstract

Fermentation characteristics, nutrient retention and aerobic stability of barley silages prepared using 6 commercial inoculants were evaluated using 126 mini-silos (3-L) in a completely randomized design. Whole barley forage was chopped, wilted to 39% DM and treated with water (control, S) or one of six inoculants: A (containing Lactobacillus plantarum); B (L. plantarum and Enterococcus faecium); C (L. plantarum and Pediococcus cerevisiae); D (L. plantarum, Pediococcus pentosaceus and Propionibacterium freudenreichii, plus hydrolytic enzymes); E (Lactobacillus buchneri plus hydrolytic enzymes); F (L. buchneri and P. pentosaceus plus hydrolytic enzymes). Samples of treated forage were collected for analysis at the time of ensiling, and then 18 silos of each treatment were filled, capped and weighed. Triplicate silos were weighed and opened after 1, 3, 5, 7, 33, and 61 d. On d 61, $400{\pm}5g$ of material from each silo was placed in 1-L styrofoam containers, covered with cheesecloth and held at room temperature. Silage temperature was recorded hourly for 14 d via implanted thermocouple probes. Chemical composition of the forage at ensiling was consistent with previously reported values. At d 61, pH was lowest (p<0.01) in silage S. Ammonia-N was lower (p<0.05) in silage A than in silages S, B, E, or F. Compared to pre-ensiling values, water soluble carbohydrate concentrations were elevated in silages S, A, B, C and D, and decreased in E and F. Lactic acid concentrations were similar (p>0.10) across treatments. Acetic acid levels were highest (p<0.01) in silage E and lowest (p<0.01) in silage D. Recovery of DM was lower (p<0.01) in silage F than in silages S, A, B, C, or D. On d 61, yeasts were most numerous (p<0.01) in silage D, which was the only silage in which temperature rose more than $2^{\circ}C$ above ambient during aerobic exposure. Silage D also had the highest (p<0.01) pH and ADIN content after aerobic exposure. Lactic acid and WSC content of silage D decreased dramatically during the 14-d aerobic exposure period. Yeast counts (at d 14 of exposure) were lowest (p<0.01) in silages E and F. In general, the commercial inoculants did not appear to enhance the fermentation of barley silage to any appreciable extent in laboratory silos.

Keywords

References

  1. Bolsen, K. K., G. Ashbell and Z. Weinberg. 1996. Silage fermentation and silage additives-Review. Asian-Aust. J. Anim. Sci. 9:483-493 https://doi.org/10.5713/ajas.1996.483
  2. Buchanan-Smith, J. G. 1990. An investigation into palatability as a factor responsible for reduced intake of silage by sheep. Anim. Prod. 50:253-260 https://doi.org/10.1017/S0003356100004700
  3. Driehuis, F., S. J. W. H. Oude Elferink and P. G. Van Wikselaar. 1999. Lactobacillus buchneri improves the aerobic stability of laboratory and farm scale whole crop maize silage but does not affect feed intake and milk production of dairy cows. In: Proceedings of the 12th International Silage Conference, Uppsala, Sweden. pp. 264-265
  4. Filya, I., G. Ashbell, Y. Hen and Z. G. Weinberg. 2000. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Anim. Feed Sci. Technol. 88:39-46 https://doi.org/10.1016/S0377-8401(00)00214-5
  5. Filya, I. 2003a. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 95:1080-1086 https://doi.org/10.1046/j.1365-2672.2003.02081.x
  6. Filya, I. 2003b. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86:3575-3581 https://doi.org/10.3168/jds.S0022-0302(03)73963-0
  7. Ham, J. S., H. S. Kim, K. H. Hong, J. G. Kim, S. J. Jeong, H. S. Chae, J. N. Ahn, D. K. Kang and H. U. Kim. 2003. Inhibitory activity of lactic acid bacteria against hazardous microbes. Asian-Aust. J. Anim. Sci. 16:1550-1554 https://doi.org/10.5713/ajas.2003.1550
  8. Henderson, N. 1993. Silage additives. Anim. Feed Sci. Technol. 45:35-56 https://doi.org/10.1016/0377-8401(93)90070-Z
  9. Higginbotham, G. E., S. C. Mueller, K. K. Bolsen and E. J. DePeters. 1998. Effects of inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage. J. Dairy Sci. 81:2185-2192 https://doi.org/10.3168/jds.S0022-0302(98)75797-2
  10. Hill, H. A. and J. E. Hill. 1986. The value of plasmid profiling in monitoring Lactobacillus plantarum in silage fermentations. Curr. Microbiol. 13:91-94 https://doi.org/10.1007/BF01568288
  11. Holzer, M., E. Mayrhuber, H. Danner and R. Braun. 2003. The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 21:282-287 https://doi.org/10.1016/S0167-7799(03)00106-9
  12. Inglis, G. D., L. J. Yanke, L. M. Kawchuk and T. A. McAllister. 1999. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage. Can. J. Microbiol. 45:77-87 https://doi.org/10.1139/cjm-45-1-77
  13. Jones, G. M., R. E. Larsen and N. M. Lanning. 1980. Prediction of silage digestibility and intake by chemical analyses or in vitro fermentation techniques. J. Dairy Sci. 63:579-586 https://doi.org/10.3168/jds.S0022-0302(80)82974-2
  14. Kung, L. Jr. and N. K. Ranjit. 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 84:1149-1155 https://doi.org/10.3168/jds.S0022-0302(01)74575-4
  15. Mahanna, W. C. 1993. Silage fermentation and additive use in North America. In: Silage Production from Seed to Animal. Proceedings of the National Silage Production Conference, Syracuse, New York. pp. 85-95
  16. McAllister, T. A., L. B. Selinger, L. R. McMahon, H. D. Bae, T. J. Lysyk, S. J. Oosting and K.-J. Cheng. 1995. Intake, digestibility and aerobic stability of barley silage inoculated with mixtures of Lactobacillus plantarum and Enterococcus faecium. Can. J. Anim. Sci. 75:425-432 https://doi.org/10.4141/cjas95-062
  17. McAllister, T. A., R. Feniuk, Z. Mir, P. Mir, L. B. Selinger and K.- J. Cheng. 1998. Inoculants for alfalfa silage: Effects on aerobic stability, digestibility, and the growth performance of feedlot steers. Livest. Prod. Sci. 53:171-181 https://doi.org/10.1016/S0301-6226(97)00150-4
  18. McCartney, D. H. and A. S. Vaage. 1994. Comparative yield and feeding value of barley, oat and triticale silages. Can. J. Anim. Sci. 74: 91-96 https://doi.org/10.4141/cjas94-014
  19. McDonald, P., A. R. Henderson and S. J. E. Heron. 1991. The Biochemistry of Silage. 2nd edn. Chalcombe Publications, Marlow, Bucks, England. pp. 340
  20. Moshtaghi Nia, S. A. and K. M. Wittenberg. 1999. Use of forage inoculants with or without enzymes to improve preservation and quality of whole crop barley forage ensiled as large bales. Can. J. Anim. Sci. 79:525-532 https://doi.org/10.4141/A99-019
  21. Muck, R. E. 1993. The role of silage additives in making high quality silage. In: Silage Production from Seed to Animal. Proceedings of the National Silage Production Conference, Syracuse, New York. pp. 106-116
  22. Muck, R. E. and R. E. Pitt. 1993. Ensiling and its effect on crop quality. In: Silage Production from Seed to Animal. Proceedings of the National Silage Production Conference, Syracuse, New York. pp. 57-66
  23. Muck, R. E. and L. Kung, Jr. 1997. Effects of silage additives on ensiling. In: Silage: Field to Feedbunk, Proceedings of the North American Conference, Northeast Registered Agricultural Engineering Services Cooperative Extension, Hershey, Pennsylvania. pp. 187-199
  24. Oude Elferink, S. J. W. H., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67:125-132 https://doi.org/10.1128/AEM.67.1.125-132.2001
  25. Pahlow, G. 1991. The role of microflora in forage conservation. In: Forage Conservation Towards 2000-Proceedings of the Conference (Ed. G. Pahlow and H. Honig). Braunschweig: Landbauforschung Volkenrode, FAL, Sonderheft 123. pp. 26- 36
  26. Ranjit, N. K. and L. Kung, Jr. 2000. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 83:526-535 https://doi.org/10.3168/jds.S0022-0302(00)74912-5
  27. SAS. 1991. SAS/STAT User's Guide (version 6). SAS Inst., Inc., Cary, NC, USA
  28. Shao, T., M. Shimojo, T. Wang and Y. Masuda. 2005. Effect of additives on the fermentation quality and residual mono- and di-saccharides compositions of forage oats (Avena sativa L.) and Italian ryegrass (Lolium multiflorum Lam.) silages. Asian-Aust. J. Anim. Sci. 18:1582-1588 https://doi.org/10.5713/ajas.2005.1582
  29. Taylor, C. C., N. J. Ranjit, J. A. Mills, J. M. Neylon and L. Kung, Jr. 2002. The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. J. Dairy Sci. 85:1793-1800 https://doi.org/10.3168/jds.S0022-0302(02)74253-7
  30. Weinberg, Z. G., G. Ashbell, A. Azrieli and I. Brukental. 1993. Ensiling peas, ryegrass and wheat additives of lactic acid bacteria (LAB) and cell wall degrading enzymes. Grass Forage Sci. 48:70-78 https://doi.org/10.1111/j.1365-2494.1993.tb01838.x
  31. Weinberg, Z. G., G. Ashbell, Y. Hen and A. Azrieli. 1993. The effect of applying lactic acid bacteria on the aerobic stability of silages. J. Appl. Bacteriol. 75:512-518 https://doi.org/10.1111/j.1365-2672.1993.tb01588.x
  32. Weinberg, Z. G., G. Ashbell, K. K. Bolson, G. Pahlow, Y. Hen and A. Azrieli. 1995a. The effect of a propionic acid bacterial inoculant applied at ensiling, with or without lactic acid bacteria, on the aerobic stability of pearl millet and maize silages. J. Appl. Bacteriol. 78:430-436 https://doi.org/10.1111/j.1365-2672.1995.tb03430.x
  33. Weinberg, Z. G., G. Ashbell, H. Yaira and A. Azrieli. 1995b. The effect of cellulase and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages. Anim. Feed Sci. Technol. 55:287-293 https://doi.org/10.1016/0377-8401(95)00785-L
  34. Weinberg, Z. G. and R. E. Muck. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 19:53-68 https://doi.org/10.1111/j.1574-6976.1996.tb00253.x
  35. Weinberg, Z. G., G. Szakacs, G. Ashbell and Y. Hen. 1998. The effect of temperature and Lactobacillus amylovorus and L. plantarum, applied at ensiling, on wheat silage. J. Appl. Microbiol. 84:404-408 https://doi.org/10.1046/j.1365-2672.1998.00361.x
  36. Woolford, M. K. 1975. Microbiological screening of the straight chain fatty acids ($C_1-C_{12}$) as potential silage additives. J. Sci. Food Agric. 26:219-228 https://doi.org/10.1002/jsfa.2740260213
  37. Woolford, M. K. 1984. The Silage Fermentation. Marcel Dekker, Inc., New York, NY
  38. Woolford, M. K. 1990. The detrimental effects of air on silage. J. Appl. Bacteriol. 68:101-116 https://doi.org/10.1111/j.1365-2672.1990.tb02554.x
  39. Yahaya, M. S., M. Goto, W. Yimiti, B. Smerjai and Y. Kawamoto. 2004. Evaluation of fermentation quality of a tropical and temperate forage crops ensiled with additives of fermented juice of epiphytic lactic acid bacteria (FJLB). Asian-Aust. J. Anim. Sci. 17:942-946 https://doi.org/10.5713/ajas.2004.942
  40. Zahiroddini, H., J. Baah and T. A. McAllister. 2004. Effect of an inoculant and hydrolytic enzymes on fermentation and nutritive value of whole crop barley silage. Anim. Feed Sci. Technol. 117:317-330 https://doi.org/10.1016/j.anifeedsci.2004.08.013

Cited by

  1. Effect of Microbial and Chemical Combo Additives on Nutritive Value and Fermentation Characteristic of Whole Crop Barley Silage vol.28, pp.9, 2015, https://doi.org/10.5713/ajas.15.0106
  2. A nutritional evaluation of common barley varieties grown for silage by beef and dairy producers in western Canada vol.96, pp.4, 2016, https://doi.org/10.1139/cjas-2016-0032
  3. Effects of hybrid and bacterial inoculation on fermentation quality and fatty acid profile of barley silage pp.13443941, 2018, https://doi.org/10.1111/asj.12923
  4. Kukurūzų siloso fermentacijos rodiklių, bakterijų populiacijos ir aerobinio stabilumo svyravimai vol.105, pp.4, 2018, https://doi.org/10.13080/z-a.2018.105.048
  5. in combination with chitinase on the preservation of high-moisture alfalfa hay vol.73, pp.3, 2018, https://doi.org/10.1111/gfs.12351
  6. Bacterial and fungal communities, fermentation, and aerobic stability of conventional hybrids and brown midrib hybrids ensiled at low moisture with or without a homo- and heterofermentative inoculant vol.101, pp.4, 2018, https://doi.org/10.3168/jds.2017-13754
  7. The Effect of Bacterial Inoculants and a Chemical Preservative on the Fermentation and Aerobic Stability of Whole-crop Cereal Silages vol.20, pp.3, 2006, https://doi.org/10.5713/ajas.2007.378
  8. Effect of Location, Year and Variety on Winter Cereal Forage Yield and Quality in the Southern Plateau of the Spain vol.21, pp.10, 2008, https://doi.org/10.5713/ajas.2008.70644
  9. Effect of Replacing Corn Silage with Whole Crop Rice Silage in Total Mixed Ration on Intake, Milk Yield and Its Composition in Holsteins vol.22, pp.4, 2006, https://doi.org/10.5713/ajas.2009.80556
  10. 2008년도 사일리지 품질경연대회에 출품한 청보리의 품질 평가 vol.29, pp.4, 2006, https://doi.org/10.5333/kgfs.2009.29.4.345
  11. Effects of Homolactic Bacterial Inoculant Alone or Combined with an Anionic Surfactant on Fermentation, Aerobic Stability and In situ Ruminal Degradability of Barley Silage vol.24, pp.3, 2006, https://doi.org/10.5713/ajas.2011.10320