• Title/Summary/Keyword: Ensemble system

Search Result 368, Processing Time 0.161 seconds

Development of Machine Learning Ensemble Model using Artificial Intelligence (인공지능을 활용한 기계학습 앙상블 모델 개발)

  • Lee, K.W.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.

Melanoma Classification Using Log-Gabor Filter and Ensemble of Deep Convolution Neural Networks

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1203-1211
    • /
    • 2022
  • Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.

Application of couple sparse coding ensemble on structural damage detection

  • Fallahian, Milad;Khoshnoudian, Faramarz;Talaei, Saeid
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • A method is proposed to detect structural damages in the presence of damping using noisy data. This method uses Frequency Response Function (FRF) and Mode-Shapes as the input parameters for a system of Couple Sparse Coding (CSC) to study the healthy state of the structure. To obtain appropriate patterns of FRF for CSC training, Principal Component Analysis (PCA) technique is adopted to reduce the full-size FRF to overcome over-fitting and convergence problems in machine-learning training. To verify the proposed method, a numerical two-story frame structure is employed. A system of individual CSCs is trained with FRFs and mode-shapes, and then termed ensemble to detect the health condition of the structure. The results demonstrate that the proposed method is accurate in damage identification even in presence of up to 20% noisy data and 5% unconsidered damping ratio. Furthermore, it can be concluded that CSC ensemble is highly efficient to detect the location and the severity of damages in comparison to the individual CSC trained only with FRF data.

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

A Comprehensive Approach for Tamil Handwritten Character Recognition with Feature Selection and Ensemble Learning

  • Manoj K;Iyapparaja M
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1540-1561
    • /
    • 2024
  • This research proposes a novel approach for Tamil Handwritten Character Recognition (THCR) that combines feature selection and ensemble learning techniques. The Tamil script is complex and highly variable, requiring a robust and accurate recognition system. Feature selection is used to reduce dimensionality while preserving discriminative features, improving classification performance and reducing computational complexity. Several feature selection methods are compared, and individual classifiers (support vector machines, neural networks, and decision trees) are evaluated through extensive experiments. Ensemble learning techniques such as bagging, and boosting are employed to leverage the strengths of multiple classifiers and enhance recognition accuracy. The proposed approach is evaluated on the HP Labs Dataset, achieving an impressive 95.56% accuracy using an ensemble learning framework based on support vector machines. The dataset consists of 82,928 samples with 247 distinct classes, contributed by 500 participants from Tamil Nadu. It includes 40,000 characters with 500 user variations. The results surpass or rival existing methods, demonstrating the effectiveness of the approach. The research also offers insights for developing advanced recognition systems for other complex scripts. Future investigations could explore the integration of deep learning techniques and the extension of the proposed approach to other Indic scripts and languages, advancing the field of handwritten character recognition.

A Novel Method for Inserting an MPEG-2 TS into Ensemble in a DMB Transmission System

  • Lee, Gwang-Soon;Bae, Byung-Jun;Hahm, Young-Kwon;Lee, Soo-In
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.653-656
    • /
    • 2004
  • This paper presents an effective algorithm for inserting an MPEG-2 transport stream (TS) into a Digital Audio Broadcasting (DAB) ensemble without any bandwidth waste in a Digital Multimedia Broadcasting (DMB) transmission system. The key technologies of this algorithm include packet rate control and program clock reference correction, which are important for TS processing. The proposed algorithms are applied to the various DMB transmission systems based on Eureka-147, and the performance of the proposed algorithm is confirmed through the experimental DMB broadcasting.

  • PDF

Seasonal Prediction of Tropical Cyclone Frequency in the Western North Pacific using GDAPS Ensemble Prediction System (GDAPS 앙상블 예보 시스템을 이용한 북서태평양에서의 태풍 발생 계절 예측)

  • Kim, Ji-Sun;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.269-279
    • /
    • 2007
  • This study investigates the possibility of seasonal prediction for tropical cyclone activity in the western North Pacific by using a dynamical modeling approach. We use data from the SMIP/HFP (Seasonal Prediction Model Inter-comparison Project/Historical Forecast Project) experiment with the Korea Meteorological Administration's GDAPS (Global Data Assimilation and Prediction System) T106 model, focusing our analysis on model-generated tropical cyclones. It is found that the prediction depends primarily on the tropical cyclone (TC) detecting criteria. Additionally, a scaling factor and a different weighting to each ensemble member are found to be essential for the best predictions of summertime TC activity. This approach indeed shows a certain skill not only in the category forecast but in the standard verifications such as Brier score and relative operating characteristics (ROC).

Remaining Useful Life Estimation based on Noise Injection and a Kalman Filter Ensemble of modified Bagging Predictors

  • Hung-Cuong Trinh;Van-Huy Pham;Anh H. Vo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3242-3265
    • /
    • 2023
  • Ensuring reliability of a machinery system involve the prediction of remaining useful life (RUL). In most RUL prediction approaches, noise is always considered for removal. Nevertheless, noise could be properly utilized to enhance the prediction capabilities. In this paper, we proposed a novel RUL prediction approach based on noise injection and a Kalman filter ensemble of modified bagging predictors. Firstly, we proposed a new method to insert Gaussian noises into both observation and feature spaces of an original training dataset, named GN-DAFC. Secondly, we developed a modified bagging method based on Kalman filter averaging, named KBAG. Then, we developed a new ensemble method which is a Kalman filter ensemble of KBAGs, named DKBAG. Finally, we proposed a novel RUL prediction approach GN-DAFC-DKBAG in which the optimal noise-injected training dataset was determined by a GN-DAFC-based searching strategy and then inputted to a DKBAG model. Our approach is validated on the NASA C-MAPSS dataset of aero-engines. Experimental results show that our approach achieves significantly better performance than a traditional Kalman filter ensemble of single learning models (KESLM) and the original DKBAG approaches. We also found that the optimal noise-injected data could improve the prediction performance of both KESLM and DKBAG. We further compare our approach with two advanced ensemble approaches, and the results indicate that the former also has better performance than the latters. Thus, our approach of combining optimal noise injection and DKBAG provides an effective solution for RUL estimation of machinery systems.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

Appraisal of spatial characteristics and applicability of the predicted ensemble rainfall data (강우앙상블 예측자료의 공간적 특성 및 적용성 평가)

  • Lee, Sang-Hyeop;Seong, Yeon-Jeong;Kim, Gyeong-Tak;Jeong, Yeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.1025-1037
    • /
    • 2020
  • This study attempted to evaluate the spatial characteristics and applicability of the predicted ensemble rainfall data used for heavy rain alarms. Limited area ENsemble prediction System (LENS) has 13 rainfall ensemble members, so it is possible to use a probabilistic method in issuing heavy rain warnings. However, the accessibility of LENS data is very low, so studies on the applicability of rainfall prediction data are insufficient. In this study, the evaluation index was calculated by comparing one point value and the area average value with the observed value according to the heavy rain warning system used for each administrative district. In addition, the accuracy of each ensemble member according to the LENS issuance time was evaluated. LENS showed the uncertainty of over or under prediction by member. Area-based prediction showed higher predictability than point-based prediction. In addition, the LENS data that predicts the upcoming 72-hour rainfall showed good predictive performance for rainfall events that may have an impact on a water disaster. In the future, the predicted rainfall data from LENS are expected to be used as basic data to prepare for floods in administrative districts or watersheds.