• Title/Summary/Keyword: Ensemble streamflow prediction

Search Result 33, Processing Time 0.028 seconds

Uncertainty assessment of ensemble streamflow prediction method (앙상블 유량예측기법의 불확실성 평가)

  • Kim, Seon-Ho;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.523-533
    • /
    • 2018
  • The objective of this study is to analyze uncertainties of ensemble-based streamflow prediction method for model parameters and input data. ESP (Ensemble Streamflow Prediction) and BAYES-ESP (Bayesian-ESP) based on ABCD rainfall-runoff model were selected as streamflow prediction method. GLUE (Generalized Likelihood Uncertainty Estimation) was applied for the analysis of parameter uncertainty. The analysis of input uncertainty was performed according to the duration of meteorological scenarios for ESP. The result showed that parameter uncertainty was much more significant than input uncertainty for the ensemble-based streamflow prediction. It also indicated that the duration of observed meteorological data was appropriate to using more than 20 years. And the BAYES-ESP was effective to reduce uncertainty of ESP method. It is concluded that this analysis is meaningful for elaborating characteristics of ESP method and error factors of ensemble-based streamflow prediction method.

Probabilistic Daecheong Dam Streamflow Prediction using Weather Outlook Weighted Ensemble Streamflow Prediction (확률론적 통계분석을 이용한 대청댐 유입량 예측)

  • Lee, Sang-Jin;Kim, Jeong-Kon;Kim, Joo-Cheol;Woo, Dong-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.303-303
    • /
    • 2011
  • 효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.

  • PDF

Forecasting Monthly Runoff Using Ensemble Streamflow Prediction (앙상블 예측기법을 통한 유역 월유출 전망)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Hwang, Man-Ha;Maeng, Seung-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • In this study the validities of runoff prediction methods are reviewed around ESP (Ensemble Streamflow Prediction) techniques. The improvements of runoff predictions on Yongdam river basin are evaluated by the comparison of different prediction methods including ESP incorporated with qualitative meteorological outlooks provided by meteorological agency as well as the runoff forecasting based on the analysis of the historical rainfall scenarios. As a result it is assessed that runoff predictions with ESP may give rise to more accurate results than the ordinary historical average runoffs. In deed the latter gave the mean of yearly absolute error as to be 60.86 MCM while the errors of the former ones amounted to 44.12 MCM (ESP) and 42.83 MCM (ESP incorporated with qualitative meteorological outlooks) respectively. In addition it is confirmed that ESP incorporated with qualitative meteorological outlooks could improve the accuracy of the results more and more. Especially the degree of improvement of ESP with meteorological outlooks shows rising by 10.8% in flood season and 8% in drought season. Therefore the methods of runoff predictions with ESP can be further used as the basic forecasting information tool for the purpose of the effective watershed management.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Water Quality Forecasting of the River Applying Ensemble Streamflow Prediction (앙상블 유출 예측기법을 적용한 하천 수질 예측)

  • Ahn, Jung Min;Ryoo, Kyong Sik;Lyu, Siwan;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.359-366
    • /
    • 2012
  • Accurate predictions about the water quality of a river have great importance in identifying in-stream flow and water supply requirements and solving relevant environmental problems. In this study, the effect of water release from upstream dam on the downstream water quality has been investigated by applying a hydological model combined with QUAL2E to Geum River basin. The ESP (Ensemble Stream Prediction) method, which has been validated and verified by lots of researchers, was used to predict reservoir and tributary inflow. The input parameters for a combined model to predict both hydrological characteristics and water quality were identified and optimized. In order to verify the model performance, the simulated result at Gongju station, located at the downstream from Daecheong Dam, has been compared with measured data in 2008. As a result, it was found that the proposed model simulates well the values of BOD, T-N, and T-P with an acceptable reliability.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Value of Ensemble Streamflow Forecasts for Reservoir Operations during the Drawdown Period (이수기 저수지 운영을 위한 앙상블 유량예측의 효용성)

  • Eum, Hyung-Il;Ko, Ick-Hwan;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.187-198
    • /
    • 2006
  • Korea Water Resources Corporation(KOWACO) has developed the Integrated Real-time Water Management System(IRWMS) that calculates monthly optimal ending target storages by using Sampling Stochastic Dynamic Programming(SSDP) with Ensemble Streamflow Prediction(ESP) running on the $1^{st}$ day of each month. This system, however, has a shortcoming: it cannot reflect the hydrolmeteorologic variations in the middle of the month. To overcome this drawback, in this study updated ESP forecasts three times each month by using the observed precipitation series from the $1^{st}$ day of the month to the forecast day and the historical precipitation ensemble for the remaining days. The improved accuracy and its effect on the reservoir operations were quantified as a result. SSDP/ESP21 that reflects within-a-month hydrolmeteorologic states saves $1\;X\;10^6\;m^3$ in water shortage on average than SSDP/ESP01. In addition, the simulation result demonstrated that the effect of ESP accuracy on the reduction of water shortage became more important when the total runoff was low during the drawdown period.

A Study on the Influence of Prediction and Scenario Periods for the Reliability of Ensemble Streamflow Prediction (예측 및 시나리오 기간이 앙상블 유량예측의 신뢰도에 미치는 영향 검토)

  • Kang, Tae-Ho;Kim, Chung-Soo;Kim, Nam-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1279-1283
    • /
    • 2010
  • 미국의 경우 1994년 발생한 대홍수(Great Flood)에 대해 사건조사를 수행하면서 예측에 포함되는 불확실성 정도를 제공하지 못하는 확정적 예측의 위험성 및 확률유량예측에 대한 필요성이 부각되었으며, 앙상블 유량예측(Ensemble Streamflow Prediction, ESP) 기법을 활용한 확률유량예측 방안에 대해 지속적으로 연구가 수행되고 있다. 국내에서도 확률예측에 대한 필요성이 인식되면서 기존 국외 연구사례를 토대로 국내 환경에 적용 가능한 방안에 대한 연구가 진행되었으며, 중장기 앙상블 유량예측의 경우 현업에서 다양한 형태로 활용되고 있다. 앙상블 유량예측의 기본이론은 예측시점의 초기조건 하에서 예측기간에 발생 가능한 기상 앙상블 시나리오를 수문모형의 입력자료로 사용하여 불확실성 범위를 설명 가능한 유량 앙상블을 모의하는 기법이다. 이러한 이론적 단순함 때문에 쉽게 현업의 유량예측 시스템 내에서 사용할 수 있다는 장점이 있으나, 동시에 기법적 특성으로 인하여 유량예측의 신뢰도가 현업에서 활용되기 어려울 정도로 낮아지는 관계로, 이러한 한계점을 극복하기 위해 그동안 기상자료 및 수문모형으로 인한 불확실성 저감에 대한 연구가 수행되었다. 하지만 예측 및 시나리오 기간의 잘못된 설정으로 기존의 불확실성 저감을 위한 연구의 적용에도 불구하고 앙상블 유량예측의 신뢰도가 오히려 낮아질 수 있으므로, 본 연구는 시나리오 기간에 따른 오차의 양상과 예측기간의 증가에 따른 초기조건의 영향을 분석하여 앙상블 유량예측의 기법적 특성 하에서 신뢰도 높은 예측을 기대할 수 있는 예측 및 시나리오 기간을 제안하였다.

  • PDF

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

Pre- and Post-Processors of Ensemble Streamflow Prediction System (앙상블 유량예측 시스템의 사전 및 사후처리에 관한 연구)

  • Kang, Tae-Ho;Kim, Young-Oh;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.264-268
    • /
    • 2008
  • 미래 발생 가능한 수문 및 기상현상의 예측과정은 지식의 부족과 자연현상의 다양성으로 인해 불확실성을 포함하게 된다. 하지만 많은 예측들은 아직까지 확정적으로 제공되고 있으며, 결과적으로 예측결과의 불확실성 정도를 제공하지 못하고 있다. 앙상블 유량예측(ESP, Ensemble Streamflow Prediction)은 이러한 불확실성을 고려하여 수자원시스템의 의사결정에 있어 중요한 요소 중 하나인 유량예측을 수행할 수 있는 방법이다. 하지만 ESP의 결과는 기상자료, 유역 초기조건, 수문모형의 매개변수, 단순화된 수문모형에 의해 비교적 큰 불확실성을 포함하게 되며, 따라서 실제적인 현업에서의 사용을 위해서는 불확실성 정도를 줄이기 위한 사전 및 사후처리 과정이 요구된다. 본 연구에서는 국내에서 활용 가능한 기후 예보자료를 사용하여 앙상블 유량예측에 적용할 수 있는 사전처리 방안들을 검토하고, 국내에서 사후처리를 위해 적용되었던 최적선형 보정기법에 더해 다양한 기법들을 강우유출모형인 TANK모형의 모의결과 보정에 적용하였다. 사전 및 사후처리를 적용한 결과 기상자료와 유량예측과정에 존재하는 불확실성을 저감시키는 것이 가능하였다. 특히 사전 및 사후 처리가 동시에 적용되었을 경우 그 향상 정도가 단순히 각각의 방법에 의한 향상 정도를 합한 것보다 높게 나타날 수 있음이 확인되었다. 사전 및 사후처리를 동시에 적용한 경우 이수기에는 RPS(Ranked Probability Score) 평가방법 내에서 54%를, 홍수기에는 8%를 향상시키는 것이 가능하였다.

  • PDF