• 제목/요약/키워드: Ensemble decision tree

검색결과 75건 처리시간 0.031초

Ensemble of Fuzzy Decision Tree for Efficient Indoor Space Recognition

  • Kim, Kisang;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we expand the process of classification to an ensemble of fuzzy decision tree. For indoor space recognition, many research use Boosted Tree, consists of Adaboost and decision tree. The Boosted Tree extracts an optimal decision tree in stages. On each stage, Boosted Tree extracts the good decision tree by minimizing the weighted error of classification. This decision tree performs a hard decision. In most case, hard decision offer some error when they classify nearby a dividing point. Therefore, We suggest an ensemble of fuzzy decision tree, which offer some flexibility to the Boosted Tree algorithm as well as a high performance. In experimental results, we evaluate that the accuracy of suggested methods improved about 13% than the traditional one.

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Tree size determination for classification ensemble

  • Choi, Sung Hoon;Kim, Hyunjoong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.255-264
    • /
    • 2016
  • Classification is a predictive modeling for a categorical target variable. Various classification ensemble methods, which predict with better accuracy by combining multiple classifiers, became a powerful machine learning and data mining paradigm. Well-known methodologies of classification ensemble are boosting, bagging and random forest. In this article, we assume that decision trees are used as classifiers in the ensemble. Further, we hypothesized that tree size affects classification accuracy. To study how the tree size in uences accuracy, we performed experiments using twenty-eight data sets. Then we compare the performances of ensemble algorithms; bagging, double-bagging, boosting and random forest, with different tree sizes in the experiment.

투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측 (Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models)

  • 이재득
    • 무역학회지
    • /
    • 제46권2호
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

머신러닝을 활용한 모돈의 생산성 예측모델 (Forecasting Sow's Productivity using the Machine Learning Models)

  • 이민수;최영찬
    • 농촌지도와개발
    • /
    • 제16권4호
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

신경망과 의사결정 나무를 이용한 충수돌기염 환자의 재원일수 예측모형 개발 (Length-of-Stay Prediction Model of Appendicitis using Artificial Neural Networks and Decision Tree)

  • 정석훈;한우석;서용무;이현실
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1424-1432
    • /
    • 2009
  • 충수돌기염 환자의 LoS(Length of Stay)를 예측하는 것은 병상의 운영에 적지 않은 영향을 준다. 본 논문에서는 Neural Networks와 Decision Tree를 이용하여 LoS와 연관이 높은 입력변수들을 찾아 그 의미를 분석하며, 찾아낸 입력변수들을 이용하여 다양한 LoS 예측 모형을 개발하고 그 성능을 비교하였다. 모형의 예측 정확성을 높이기 위하여 Bagging과 Boosting 등의 Ensemble 기법도 적용하였다. 실험 결과, Decision Tree 모형이 Neural Networks 모형보다 좀 더 적은 수의 속성을 가지고도 거의 통일한 예측력을 보였으며, Ensemble 기법 중에서는 Bagging 기법이 Boosting 기법보다 좋은 결과를 보여주었다. 의사결정나무 기법은 Neural Networks 기법에 비해 설명력이 있으며, 충수돌기염의 LoS 예측에 매우 효과적이었고, 중요 입력 변수의 선정에도 좋은 결과를 보여줌에 따라 향후 적극적인 기법의 도입이 필요하다고 할 수 있다.

Predicting Stock Liquidity by Using Ensemble Data Mining Methods

  • Bae, Eun Chan;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.9-19
    • /
    • 2016
  • In finance literature, stock liquidity showing how stocks can be cashed out in the market has received rich attentions from both academicians and practitioners. The reasons are plenty. First, it is known that stock liquidity affects significantly asset pricing. Second, macroeconomic announcements influence liquidity in the stock market. Therefore, stock liquidity itself affects investors' decision and managers' decision as well. Though there exist a great deal of literature about stock liquidity in finance literature, it is quite clear that there are no studies attempting to investigate the stock liquidity issue as one of decision making problems. In finance literature, most of stock liquidity studies had dealt with limited views such as how much it influences stock price, which variables are associated with describing the stock liquidity significantly, etc. However, this paper posits that stock liquidity issue may become a serious decision-making problem, and then be handled by using data mining techniques to estimate its future extent with statistical validity. In this sense, we collected financial data set from a number of manufacturing companies listed in KRX (Korea Exchange) during the period of 2010 to 2013. The reason why we selected dataset from 2010 was to avoid the after-shocks of financial crisis that occurred in 2008. We used Fn-GuidPro system to gather total 5,700 financial data set. Stock liquidity measure was computed by the procedures proposed by Amihud (2002) which is known to show best metrics for showing relationship with daily return. We applied five data mining techniques (or classifiers) such as Bayesian network, support vector machine (SVM), decision tree, neural network, and ensemble method. Bayesian networks include GBN (General Bayesian Network), NBN (Naive BN), TAN (Tree Augmented NBN). Decision tree uses CART and C4.5. Regression result was used as a benchmarking performance. Ensemble method uses two types-integration of two classifiers, and three classifiers. Ensemble method is based on voting for the sake of integrating classifiers. Among the single classifiers, CART showed best performance with 48.2%, compared with 37.18% by regression. Among the ensemble methods, the result from integrating TAN, CART, and SVM was best with 49.25%. Through the additional analysis in individual industries, those relatively stabilized industries like electronic appliances, wholesale & retailing, woods, leather-bags-shoes showed better performance over 50%.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensemble

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.617-625
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지 (Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone)

  • 하으뜸;김정민;류광렬
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • 최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.