• Title/Summary/Keyword: Ensemble Algorithm

Search Result 223, Processing Time 0.026 seconds

A Genetic Algorithm-based Classifier Ensemble Optimization for Activity Recognition in Smart Homes

  • Fatima, Iram;Fahim, Muhammad;Lee, Young-Koo;Lee, Sungyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2853-2873
    • /
    • 2013
  • Over the last few years, one of the most common purposes of smart homes is to provide human centric services in the domain of u-healthcare by analyzing inhabitants' daily living. Currently, the major challenges in activity recognition include the reliability of prediction of each classifier as they differ according to smart homes characteristics. Smart homes indicate variation in terms of performed activities, deployed sensors, environment settings, and inhabitants' characteristics. It is not possible that one classifier always performs better than all the other classifiers for every possible situation. This observation has motivated towards combining multiple classifiers to take advantage of their complementary performance for high accuracy. Therefore, in this paper, a method for activity recognition is proposed by optimizing the output of multiple classifiers with Genetic Algorithm (GA). Our proposed method combines the measurement level output of different classifiers for each activity class to make up the ensemble. For the evaluation of the proposed method, experiments are performed on three real datasets from CASAS smart home. The results show that our method systematically outperforms single classifier and traditional multiclass models. The significant improvement is achieved from 0.82 to 0.90 in the F-measures of recognized activities as compare to existing methods.

Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction (여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF

Detection for JPEG steganography based on evolutionary feature selection and classifier ensemble selection

  • Ma, Xiaofeng;Zhang, Yi;Song, Xiangfeng;Fan, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5592-5609
    • /
    • 2017
  • JPEG steganography detection is an active research topic in the field of information hiding due to the wide use of JPEG image in social network, image-sharing websites, and Internet communication, etc. In this paper, a new steganalysis method for content-adaptive JPEG steganography is proposed by integrating the evolutionary feature selection and classifier ensemble selection. First, the whole framework of the proposed steganalysis method is presented and then the characteristic of the proposed method is analyzed. Second, the feature selection method based on genetic algorithm is given and the implement process is described in detail. Third, the method of classifier ensemble selection is proposed based on Pareto evolutionary optimization. The experimental results indicate the proposed steganalysis method can achieve a competitive detection performance by compared with the state-of-the-art steganalysis methods when used for the detection of the latest content-adaptive JPEG steganography algorithms.

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

Estimation of bubble size distribution using deep ensemble physics-informed neural network (딥앙상블 물리 정보 신경망을 이용한 기포 크기 분포 추정)

  • Sunyoung Ko;Geunhwan Kim;Jaehyuk Lee;Hongju Gu;Kwangho Moon;Youngmin Choo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Physics-Informed Neural Network (PINN) is used to invert bubble size distributions from attenuation losses. By considering a linear system for the bubble population inversion, Adaptive Learned Iterative Shrinkage Thresholding Algorithm (Ada-LISTA), which has been solved linear systems in image processing, is used as a neural network architecture in PINN. Furthermore, a regularization based on the linear system is added to a loss function of PINN and it makes a PINN have better generalization by a solution satisfying the bubble physics. To evaluate an uncertainty of bubble estimation, deep ensemble is adopted. 20 Ada-LISTAs with different initial values are trained using the same training dataset. During test with attenuation losses different from those in the training dataset, the bubble size distribution and corresponding uncertainty are indicated by average and variance of 20 estimations, respectively. Deep ensemble Ada-LISTA demonstrate superior performance in inverting bubble size distributions than the conventional convex optimization solver of CVX.

Improving an Ensemble Model by Optimizing Bootstrap Sampling (부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선)

  • Min, Sung-Hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving prediction accuracy. Bagging is one of the most popular ensemble learning techniques. Bagging has been known to be successful in increasing the accuracy of prediction of the individual classifiers. Bagging draws bootstrap samples from the training sample, applies the classifier to each bootstrap sample, and then combines the predictions of these classifiers to get the final classification result. Bootstrap samples are simple random samples selected from the original training data, so not all bootstrap samples are equally informative, due to the randomness. In this study, we proposed a new method for improving the performance of the standard bagging ensemble by optimizing bootstrap samples. A genetic algorithm is used to optimize bootstrap samples of the ensemble for improving prediction accuracy of the ensemble model. The proposed model is applied to a bankruptcy prediction problem using a real dataset from Korean companies. The experimental results showed the effectiveness of the proposed model.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

  • Moshkbar-Bakhshayesh, Khalil
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3944-3951
    • /
    • 2021
  • Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.