• 제목/요약/키워드: Ensemble Algorithm

검색결과 230건 처리시간 0.023초

스마트관광 시대의 관광숙박업 영업 예측 모형: 코로나19 팬더믹을 중심으로 (Predictive Models for the Tourism and Accommodation Industry in the Era of Smart Tourism: Focusing on the COVID-19 Pandemic)

  • 조유진;김차미;손승연;노미진
    • 스마트미디어저널
    • /
    • 제12권8호
    • /
    • pp.18-25
    • /
    • 2023
  • 2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.

기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가 (An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5))

  • 허솔잎;현유경;류영;강현석;임윤진;김윤재
    • 대기
    • /
    • 제29권3호
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

입력변수 구성에 따른 총유기탄소(TOC) 예측 머신러닝 모형의 성능 비교 (Comparison of the Performance of Machine Learning Models for TOC Prediction Based on Input Variable Composition)

  • 이소현;박정수
    • 유기물자원화
    • /
    • 제32권3호
    • /
    • pp.19-29
    • /
    • 2024
  • 총 유기 탄소 (total organic carbon, TOC)는 물에 포함된 유기 탄소의 총량을 나타내며 BOD, COD와 함께 수중의 유기물질량에 대한 정량적인 지표로 활용되는 대표적인 수질 항목이다. 본 연구에서는 대표적인 앙상블(ensemble) 머신러닝 알고리즘의 하나인 XGBoost (XGB)를 이용하여 TOC를 예측하는 모형을 구축하였다. 모형의 구축을 위한 독립변수로는 수온, pH, 전기전도도, 용존 산소 농도, 생물화학적 산소요구량, 화학적 산소요구량, 부유물질, 총질소, 총인 및 유량을 활용하였다. 또한 모형의 구축에 활용된 다양한 수질 항목의 영향에 대한 정량적인 분석을 위해 입력변수의 feature importance를 산정하였으며, 이를 기반으로 변수중요도에 따라 중요도가 낮은 항목을 순차적으로 제외하여 모형의 성능 변화를 분석하였다. 변수중요도가 낮은 항목을 순차적으로 제외하여 구축한 모형의 성능은 RSR (root mean squared error-observation standard deviation ratio) 0.53~0.55의 범위를 보였으며, 전체 입력변수를 적용한 모형의 RSR 값은 0.53로 가장 우수한 성능을 보이는 것으로 분석되었다. 또한 모형의 현장 적용성을 높이기 위해 현장 측정이 상대적으로 용이한 측정항목을 중심으로 모형을 구축하고 성능을 분석하였다. 분석결과 상대적으로 측정이 용이한 항목인 수온, pH, 전기전도도, 용존산소농도, 부유물질농도만으로 구축된 모형의 경우에도 RSR 값이 0.72로 분석되어 상대적으로 측정이 용이한 현장 수질측정항목만을 이용하는 경우에도 안정적인 성능의 확보가 가능할 수 있음을 확인하였다.

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.

수치 예측 알고리즘 기반의 풍속 예보 모델 학습 (Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm)

  • 김세영;김정민;류광렬
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.19-27
    • /
    • 2015
  • 대체 에너지 기술 개발을 위해 지난 20년 동안 풍력 발전에 관련한 기술들이 축적되어왔다. 풍력 발전은 자연적으로 부는 바람을 에너지원으로 사용하므로 환경 친화적이며 경제적이다. 이러한 풍력 발전의 효율적인 운영을 위해서는 시시각각 변하는 자연 바람의 세기를 정확도 높게 예측할 수 있어야 한다. 풍속을 평균적으로 얼마나 정확하게 잘 예측하는지도 중요하지만 실제 값과 예측 값의 절대 오차의 최댓값을 최소화시키는 것 또한 중요하다. 발전 운영 계획 측면에서 예측 풍속을 통한 예측 발전량과 실제 발전량의 차이는 경제적 손실을 가져오는 원인이 되므로 유연한 운영 계획을 세우기 위해 최대 오차가 중요한 역할을 한다. 본 논문에서는 풍속 예측 방법으로 과거 풍속 변화 추세뿐만 아니라 기상청 예보와 시기적인 풍속의 특성을 고려하기 위한 경향 값을 반영하여 수치 예측 알고리즘으로 학습한 풍속 예보 모델을 제안한다. 기상청 예보는 풍력 발전 단지를 포함하는 비교적 넓은 지역의 풍속을 예보하지만 풍속을 예측하고자 하는 국소지점에 대한 풍속 예측의 정확도를 높이는데 상당히 기여한다. 또한 풍속 변화 추세는 긴 시간동안 관측한 풍속을 세세하게 반영할수록 풍속 예측의 정확도를 높인다.

재결정 위상의 분산적 구성과 비구조적 피어투피어 망에서의 효율적 검색 (Distributed Construction of the Recrystallization Topology and Efficient Searching in the Unstructured Peer-to-Peer Network)

  • 박재현
    • 한국정보과학회논문지:정보통신
    • /
    • 제35권4호
    • /
    • pp.251-267
    • /
    • 2008
  • 본 논문에서 비구조적 피어투피어 망을 위한 적은 검색 시간을 가지는 최적화된 위상을 구성하는 분산된 위상 제어 알고리즘을 제안한다. 각 노드는 높은 검색 적중률을 가지는 최적의 노드들을 노드 자신의 적중률에 지수적으로 비례하는 수만큼 선택하고, 그들과 연계한다. 총체적 거동은 자연계에서는 볼 수 있는, 각 입자의 에너지 준위에 따라 입자들이 결합되는 재결정 현상과 결과적으로 거의 유사하다. 구성된 위상의 노드들의 적중율들 사이에는 부분 순서(Partial-order) 관계가 있다. 그러므로, 질의 메시지가 노드를 방문하는 경우에, 그 노드는 항상 직전에 방문하였던 노드들 보다 더 높은 적중률을 가지고 있다. 또한, 무위도식(Freeloader) 노드로부터 보내진 질의 메시지는 한 홉 전달에 의해, 무위도식하지 않은 노드들로 전달될 수 있고, 그것은 다시는 무위도식하는 노드들을 방문하지 않는다. 이처럼 검색은 제한된 지연시간 안에 이루어진다. 또한, 본 논문에서는 이 위상을 활용하여 효과적인 연쇄반응적 검색 방법을 제안한다. 그러한 제어된 다중 전송 방식은, 방송을 사용하는 방식 보다 질의 메시지들의 수를 43 퍼센트만큼 줄이며, 검색시간을 94 퍼센트 절감한다. 제안된 방안의 검색 성공률은 99 퍼센트이다.

디지털 인문학에서 비정형 데이터 분석을 이용한 사조 분류 방법 (Mining Intellectual History Using Unstructured Data Analytics to Classify Thoughts for Digital Humanities)

  • 서한솔;권오병
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.141-166
    • /
    • 2018
  • 최근 디지털 인문학 (Digital humanities) 연구분야의 등장으로 정보기술을 활용하여 인문학 연구의 효율성 제고에 기여하고 있다. 특히 인문학 연구에서 특정한 인물 혹은 문서가 어떠한 사상 (idea)을 담고 있는지와 다른 사상과의 어떤 연결성을 가지는지를 자동적인 방법으로 분석하는 것은 지성사(intellectual history)를 파악하는 데 중요한 도전이 될 것이다. 본 연구의 목적은 책이나 논문, 기사와 같은 비정형 데이터 (unstructured data)에 포함된 주장을 파악하고 이를 다른 주장이나 사상과 어떠한 관련이 있는지를 자동으로 분석하는 방법을 제안하는 것이다. 특히 본 연구에서는 주장과 주장 사이의 영향관계를 밝히는 히스토리 마이닝 (History Mining)이라는 방법도 제안하였다. 이를 위해 딥러닝 기법 (deep learning method)을 포함한 분류알고리즘 기법 (classification algorithm)을 활용하였다. 본 연구가 제안하는 방법론의 성능을 검증하기 위하여 철학 사조 중에서 대표적으로 대비되는 경험주의와 합리주의 관련 철학자들을 선정하고 관련된 저서 혹은 인터넷 상의 글을 수집하였다. 분류 알고리즘의 성능은 Recall, Precision, F-Score 및 Elapsed Time으로 측정하였으며 DNN, Random Forest, 그리고 앙상블 등이 우수한 성능을 보였다. 선정된 분류 알고리즘으로 특정 철학자의 글에 대해 합리주의 혹은 경험주의로 분류하였으며, 그 철학자의 활동 연도를 고려하여 히스토리 맵을 생성할 수 있었다.

핑거프린트와 랜덤포레스트 기반 실내 위치 인식 시스템 설계와 구현 (Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)

  • 이선민;문남미
    • 방송공학회논문지
    • /
    • 제23권1호
    • /
    • pp.154-161
    • /
    • 2018
  • 최근 스마트폰 사용자가 늘어남에 따라 실내 위치인식 서비스에 대한 연구의 중요성이 증가하고 있다. 실내 위치인식에는 주로 WiFi, Bluetooth 등이 연구되고 있으나, 본 연구에서는 대부분의 실내 공간에 설치되어 있고 스마트폰에 WiFi 기능이 탑재되어 있어 접근성이 좋은 WiFi를 사용한다. 본 연구에서는 수집된 WiFi의 수신신호세기를 이용하는 핑거프린트 기술과 다변량 분류법 중 Ensemble learning method인 랜덤포레스트 알고리즘을 사용한다. 핑거프린트의 데이터로는 수신신호세기와 더불어 Mac주소를 사용해 총 4개의 라디오 맵을 만들어 사용하였다. 실험은 제한된 실내공간에서 진행하였고 실험분석을 위해 본 연구에서 제안하는 방법과 유사한 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템과 비교 분석하였다. 실험 결과 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템보다 본 연구에서 제안하는 시스템의 위치인식 정확도가 약 5.8% 높고 학습 데이터 개수에 상관없이 위치인식 속도가 일정하게 유지 되며 기존 방식 보다 더 빠름을 입증하였다.

얼굴 인식 Open API를 활용한 출입자 인식 시스템 개발 (Development of a Visitor Recognition System Using Open APIs for Face Recognition)

  • 옥기수;권동우;김현우;안동혁;주홍택
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권4호
    • /
    • pp.169-178
    • /
    • 2017
  • 최근 보안에 대한 관심과 필요성이 증가하면서 출입자 인식 시스템의 수요가 증대되고 있다. 출입자 인식 시스템은 출입자를 인식하기 위해서 다양한 생체인식 방법을 사용하고 있다. 본 논문에서는 다양한 특성과 강점을 가진 다수의 얼굴인식 Open API 서비스를 통합하고, 그 인식결과를 앙상블 함으로써 인식 성능을 개선하는 얼굴인식 기반 출입자 인식 시스템을 제안한다. 또한 다양한 얼굴 인식 Open API 서비스를 앙상블 하는 출입자 인식 시스템의 구조를 제안한다. 성능 측정은 약 5개월 간 수집한 얼굴 데이터를 이용하여 수행하였으며, 측정결과로 본 논문에서 제안하는 출입자 인식 시스템이 단일 얼굴인식 Open API 서비스를 사용했을 때보다 더 높은 얼굴인식률을 보임을 확인하였다.

비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산 (Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method)

  • 이태승;박승오
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1039-1048
    • /
    • 2008
  • 본 논문에서는 새로운 비선형 와류격자법 계산 과정이 제안된다. 기존의 계산 과정은 자유와의 형태 계산을 위해 내부 반복계산 및 하향이완법을 포함한다. 하지만 본 논문에서는 유사 정상 개념에 기초한 새로운 수식을 제안하여 자유와의 형태를 계산함으로써, 계산 과정에서 내부 반복계산 및 하향이완법을 생략한다. 또한 반복계산이 진행됨에 따라 각 분절에 유도되는 유속도를 적절히 평균해 줌으로써 알고리듬의 수치적 안정성을 향상시킨다. 그리고 낮은 종횡비 날개에 대한 수치실험을 수행하여 분절의 길이, 와류중심반경, 후류영역 계산범위 등과 같은 중요 인자들의 적절한 기준을 경험적으로 결정한다.