2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.
This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.
총 유기 탄소 (total organic carbon, TOC)는 물에 포함된 유기 탄소의 총량을 나타내며 BOD, COD와 함께 수중의 유기물질량에 대한 정량적인 지표로 활용되는 대표적인 수질 항목이다. 본 연구에서는 대표적인 앙상블(ensemble) 머신러닝 알고리즘의 하나인 XGBoost (XGB)를 이용하여 TOC를 예측하는 모형을 구축하였다. 모형의 구축을 위한 독립변수로는 수온, pH, 전기전도도, 용존 산소 농도, 생물화학적 산소요구량, 화학적 산소요구량, 부유물질, 총질소, 총인 및 유량을 활용하였다. 또한 모형의 구축에 활용된 다양한 수질 항목의 영향에 대한 정량적인 분석을 위해 입력변수의 feature importance를 산정하였으며, 이를 기반으로 변수중요도에 따라 중요도가 낮은 항목을 순차적으로 제외하여 모형의 성능 변화를 분석하였다. 변수중요도가 낮은 항목을 순차적으로 제외하여 구축한 모형의 성능은 RSR (root mean squared error-observation standard deviation ratio) 0.53~0.55의 범위를 보였으며, 전체 입력변수를 적용한 모형의 RSR 값은 0.53로 가장 우수한 성능을 보이는 것으로 분석되었다. 또한 모형의 현장 적용성을 높이기 위해 현장 측정이 상대적으로 용이한 측정항목을 중심으로 모형을 구축하고 성능을 분석하였다. 분석결과 상대적으로 측정이 용이한 항목인 수온, pH, 전기전도도, 용존산소농도, 부유물질농도만으로 구축된 모형의 경우에도 RSR 값이 0.72로 분석되어 상대적으로 측정이 용이한 현장 수질측정항목만을 이용하는 경우에도 안정적인 성능의 확보가 가능할 수 있음을 확인하였다.
본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.
대체 에너지 기술 개발을 위해 지난 20년 동안 풍력 발전에 관련한 기술들이 축적되어왔다. 풍력 발전은 자연적으로 부는 바람을 에너지원으로 사용하므로 환경 친화적이며 경제적이다. 이러한 풍력 발전의 효율적인 운영을 위해서는 시시각각 변하는 자연 바람의 세기를 정확도 높게 예측할 수 있어야 한다. 풍속을 평균적으로 얼마나 정확하게 잘 예측하는지도 중요하지만 실제 값과 예측 값의 절대 오차의 최댓값을 최소화시키는 것 또한 중요하다. 발전 운영 계획 측면에서 예측 풍속을 통한 예측 발전량과 실제 발전량의 차이는 경제적 손실을 가져오는 원인이 되므로 유연한 운영 계획을 세우기 위해 최대 오차가 중요한 역할을 한다. 본 논문에서는 풍속 예측 방법으로 과거 풍속 변화 추세뿐만 아니라 기상청 예보와 시기적인 풍속의 특성을 고려하기 위한 경향 값을 반영하여 수치 예측 알고리즘으로 학습한 풍속 예보 모델을 제안한다. 기상청 예보는 풍력 발전 단지를 포함하는 비교적 넓은 지역의 풍속을 예보하지만 풍속을 예측하고자 하는 국소지점에 대한 풍속 예측의 정확도를 높이는데 상당히 기여한다. 또한 풍속 변화 추세는 긴 시간동안 관측한 풍속을 세세하게 반영할수록 풍속 예측의 정확도를 높인다.
본 논문에서 비구조적 피어투피어 망을 위한 적은 검색 시간을 가지는 최적화된 위상을 구성하는 분산된 위상 제어 알고리즘을 제안한다. 각 노드는 높은 검색 적중률을 가지는 최적의 노드들을 노드 자신의 적중률에 지수적으로 비례하는 수만큼 선택하고, 그들과 연계한다. 총체적 거동은 자연계에서는 볼 수 있는, 각 입자의 에너지 준위에 따라 입자들이 결합되는 재결정 현상과 결과적으로 거의 유사하다. 구성된 위상의 노드들의 적중율들 사이에는 부분 순서(Partial-order) 관계가 있다. 그러므로, 질의 메시지가 노드를 방문하는 경우에, 그 노드는 항상 직전에 방문하였던 노드들 보다 더 높은 적중률을 가지고 있다. 또한, 무위도식(Freeloader) 노드로부터 보내진 질의 메시지는 한 홉 전달에 의해, 무위도식하지 않은 노드들로 전달될 수 있고, 그것은 다시는 무위도식하는 노드들을 방문하지 않는다. 이처럼 검색은 제한된 지연시간 안에 이루어진다. 또한, 본 논문에서는 이 위상을 활용하여 효과적인 연쇄반응적 검색 방법을 제안한다. 그러한 제어된 다중 전송 방식은, 방송을 사용하는 방식 보다 질의 메시지들의 수를 43 퍼센트만큼 줄이며, 검색시간을 94 퍼센트 절감한다. 제안된 방안의 검색 성공률은 99 퍼센트이다.
최근 디지털 인문학 (Digital humanities) 연구분야의 등장으로 정보기술을 활용하여 인문학 연구의 효율성 제고에 기여하고 있다. 특히 인문학 연구에서 특정한 인물 혹은 문서가 어떠한 사상 (idea)을 담고 있는지와 다른 사상과의 어떤 연결성을 가지는지를 자동적인 방법으로 분석하는 것은 지성사(intellectual history)를 파악하는 데 중요한 도전이 될 것이다. 본 연구의 목적은 책이나 논문, 기사와 같은 비정형 데이터 (unstructured data)에 포함된 주장을 파악하고 이를 다른 주장이나 사상과 어떠한 관련이 있는지를 자동으로 분석하는 방법을 제안하는 것이다. 특히 본 연구에서는 주장과 주장 사이의 영향관계를 밝히는 히스토리 마이닝 (History Mining)이라는 방법도 제안하였다. 이를 위해 딥러닝 기법 (deep learning method)을 포함한 분류알고리즘 기법 (classification algorithm)을 활용하였다. 본 연구가 제안하는 방법론의 성능을 검증하기 위하여 철학 사조 중에서 대표적으로 대비되는 경험주의와 합리주의 관련 철학자들을 선정하고 관련된 저서 혹은 인터넷 상의 글을 수집하였다. 분류 알고리즘의 성능은 Recall, Precision, F-Score 및 Elapsed Time으로 측정하였으며 DNN, Random Forest, 그리고 앙상블 등이 우수한 성능을 보였다. 선정된 분류 알고리즘으로 특정 철학자의 글에 대해 합리주의 혹은 경험주의로 분류하였으며, 그 철학자의 활동 연도를 고려하여 히스토리 맵을 생성할 수 있었다.
최근 스마트폰 사용자가 늘어남에 따라 실내 위치인식 서비스에 대한 연구의 중요성이 증가하고 있다. 실내 위치인식에는 주로 WiFi, Bluetooth 등이 연구되고 있으나, 본 연구에서는 대부분의 실내 공간에 설치되어 있고 스마트폰에 WiFi 기능이 탑재되어 있어 접근성이 좋은 WiFi를 사용한다. 본 연구에서는 수집된 WiFi의 수신신호세기를 이용하는 핑거프린트 기술과 다변량 분류법 중 Ensemble learning method인 랜덤포레스트 알고리즘을 사용한다. 핑거프린트의 데이터로는 수신신호세기와 더불어 Mac주소를 사용해 총 4개의 라디오 맵을 만들어 사용하였다. 실험은 제한된 실내공간에서 진행하였고 실험분석을 위해 본 연구에서 제안하는 방법과 유사한 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템과 비교 분석하였다. 실험 결과 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템보다 본 연구에서 제안하는 시스템의 위치인식 정확도가 약 5.8% 높고 학습 데이터 개수에 상관없이 위치인식 속도가 일정하게 유지 되며 기존 방식 보다 더 빠름을 입증하였다.
최근 보안에 대한 관심과 필요성이 증가하면서 출입자 인식 시스템의 수요가 증대되고 있다. 출입자 인식 시스템은 출입자를 인식하기 위해서 다양한 생체인식 방법을 사용하고 있다. 본 논문에서는 다양한 특성과 강점을 가진 다수의 얼굴인식 Open API 서비스를 통합하고, 그 인식결과를 앙상블 함으로써 인식 성능을 개선하는 얼굴인식 기반 출입자 인식 시스템을 제안한다. 또한 다양한 얼굴 인식 Open API 서비스를 앙상블 하는 출입자 인식 시스템의 구조를 제안한다. 성능 측정은 약 5개월 간 수집한 얼굴 데이터를 이용하여 수행하였으며, 측정결과로 본 논문에서 제안하는 출입자 인식 시스템이 단일 얼굴인식 Open API 서비스를 사용했을 때보다 더 높은 얼굴인식률을 보임을 확인하였다.
본 논문에서는 새로운 비선형 와류격자법 계산 과정이 제안된다. 기존의 계산 과정은 자유와의 형태 계산을 위해 내부 반복계산 및 하향이완법을 포함한다. 하지만 본 논문에서는 유사 정상 개념에 기초한 새로운 수식을 제안하여 자유와의 형태를 계산함으로써, 계산 과정에서 내부 반복계산 및 하향이완법을 생략한다. 또한 반복계산이 진행됨에 따라 각 분절에 유도되는 유속도를 적절히 평균해 줌으로써 알고리듬의 수치적 안정성을 향상시킨다. 그리고 낮은 종횡비 날개에 대한 수치실험을 수행하여 분절의 길이, 와류중심반경, 후류영역 계산범위 등과 같은 중요 인자들의 적절한 기준을 경험적으로 결정한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.