Acknowledgement
이 성과는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2022R1F1A1065518).
References
- Ministry of Environment (ME), Introduction of Total Organic Carbon Management in Nakdonggang River Water System, Ministry of Environment, 1~5, (2022).
- Park, S. R., Son, S. H., Bae, J. G., Lee, D., Seo, D. I., and Kim, J. S., "Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological and Meteorological Factors", Korean Journal of Remote Sensing, 39(5), pp. 655~667. (2023).
- Lee, S. M., Park, K. D., and Kim, I. K., "Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong River (focusing on water quality and quantity factors)", Journal of Korean Society of Water and Wastewater, 34(4), pp. 277~288. (2020).
- Jun, G., Kwon, D., and Ki, S., "Comparing the Performance of Machine Learning Algorithms in Predicting River Water Quality and Quantity", Journal of Korea Society of Water Science and Technology, 28(1), pp. 49~57. (2020).
- Nafsin, N., and Li, J., "Prediction of total organic carbon and E. coli in rivers within the Milwaukee River basin using machine learning methods", Environmental Science: Advances, 2(2), pp. 278~293. (2023).
- Chen, T., and Guestrin, C., "Xgboost: A scalable tree boosting system", in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785~794. (2016).
- Water Environment Information System (WEIS), https://water.nier.go.kr/web (Accessed date: April 23, 2024).
- Choi, B. D., "The Function or urban river and sustainable regional development: The case of Kumho river", Journal of the Korean Association of Regional Geographers, 10(4), pp. 757~774. (2004).
- Yang, D. S., and Bae, H. K., "The effect of branches on Kumho River's water quality". Journal of Environmental Science International, 21(10), pp. 1245~1253. (2012).
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A ., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., "Scikit-learn: Machine learning in Python", the Journal of machine Learning research, 12, pp. 2825~2830. (2011).
- Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M., and Xue, K., "A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes", Remote Sensing of Environment, 248, pp. 111974. (2020).
- XGBoost, https://pypi.org/project/xgboost/ (Accessed date: November 21, 2023).
- Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Northon, J. P., Perrin, C., Pierce, S. A., Robson, B. J., Seppelt, R., Voinov, A., Fath, B. D., and Andreassian, V., "Characterising performance of environmental models", Environmental Modelling & Software, 40, pp. 1~20. (2013).
- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L., "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations", Transactions of the ASABE, 50(3), pp. 885~900. (2007).