• 제목/요약/키워드: Ensemble Algorithm

검색결과 230건 처리시간 0.028초

앙상블 학습알고리즘의 일반화 성능 비교 (Generalization Abilities of Ensemble Learning Algorithms : OLA, Bagging, Boosting)

  • 신현정;장민;조성준;이봉기;임용업
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.226-228
    • /
    • 2000
  • 최근 제안된 관찰학습(OLA: Observational Learning Algorithm)은 committee를 구성하는 각각의 학습 모델들이 다른 학습 모델들을 관찰함으로써 얻어진 가상데이터를 실제 데이터와 결합시켜 학습에 이용하는 방법이다. 본 논문에서는, UCI 데이터 셋의 분류(classification)와 예측(regression)문제에 대하여 다층 퍼셉트론을 학습 모델로 설정하고, 이에 대하여 OLA와 bagging, boosting의 성능을 비교, 분석하였다.

  • PDF

분자동역학을 이용한 나노 와이어의 역학적 거동 해석 (Analysis of Mechanical Behavior of Nanowire by Molecular Dynamics Simulation)

  • 이병용;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2007
  • Mechanical behavior of copper Nanowire is investigated, An FCC Nanowire model composed of 1,408 atoms is used for NID simulation, Simulations are performed within NVT ensemble setting without periodic boundary conditions, Nose-Poincare MD algorithm is employed to guarantee preservation of Hamiltonian. Numerical tensile tests are carried out with constant strain rate, Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values, Non-linear behavior appears around $\varepsilon$=0.064, At this instance, starting of structural reorientations are observed.

  • PDF

Development and Application of Distributed Multilayer On-line Monitoring System for High Voltage Vacuum Circuit Breaker

  • Mei, Fei;Mei, Jun;Zheng, Jianyong;Wang, Yiping
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.813-823
    • /
    • 2013
  • On-line monitoring system is important for high voltage vacuum circuit breakers (HVCBs) in operation condition assessment and fault diagnosis. A distributed multilayer system with client/server architecture is developed on rated voltage 10kV HVCB with spring operating mechanism. It can collect data when HVCB switches, calculate the necessary parameters, show the operation conditions and provide abundant information for fault diagnosis. Ensemble empirical mode decomposition (EEMD) is used to detect the singular point which is regarded as the contact moment. This method has been applied to on-line monitoring system successfully and its satisfactory effect has been proved through experiments. SVM and FCM are both effective methods for fault diagnosis. A combinative algorithm is designed to judge the faults of HVCB's operating mechanism. The system's precision and stability are confirmed by field tests.

Human Action Recognition via Depth Maps Body Parts of Action

  • Farooq, Adnan;Farooq, Faisal;Le, Anh Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2327-2347
    • /
    • 2018
  • Human actions can be recognized from depth sequences. In the proposed algorithm, we initially construct depth, motion maps (DMM) by projecting each depth frame onto three orthogonal Cartesian planes and add the motion energy for each view. The body part of the action (BPoA) is calculated by using bounding box with an optimal window size based on maximum spatial and temporal changes for each DMM. Furthermore, feature vector is constructed by using BPoA for each human action view. In this paper, we employed an ensemble based learning approach called Rotation Forest to recognize different actions Experimental results show that proposed method has significantly outperforms the state-of-the-art methods on Microsoft Research (MSR) Action 3D and MSR DailyActivity3D dataset.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

Bankruptcy Prediction with Explainable Artificial Intelligence for Early-Stage Business Models

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.58-65
    • /
    • 2023
  • Bankruptcy is a significant risk for start-up companies, but with the help of cutting-edge artificial intelligence technology, we can now predict bankruptcy with detailed explanations. In this paper, we implemented the Category Boosting algorithm following data cleaning and editing using OpenRefine. We further explained our model using the Shapash library, incorporating domain knowledge. By leveraging the 5C's credit domain knowledge, financial analysts in banks or investors can utilize the detailed results provided by our model to enhance their decision-making processes, even without extensive knowledge about AI. This empowers investors to identify potential bankruptcy risks in their business models, enabling them to make necessary improvements or reconsider their ventures before proceeding. As a result, our model serves as a "glass-box" model, allowing end-users to understand which specific financial indicators contribute to the prediction of bankruptcy. This transparency enhances trust and provides valuable insights for decision-makers in mitigating bankruptcy risks.

Quantitative Image Analysis of Fluorescence Image Stacks: Application to Cytoskeletal Proteins Organization in Tissue Engineering Constructs

  • Park, Doyoung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.103-113
    • /
    • 2019
  • Motivation: Polymerized actin-based cytoskeletal structures are crucial in shape, dynamics, and resilience of a cell. For example, dynamical actin-containing ruffles are located at leading edges of cells and have a significant impact on cell motility. Other filamentous actin (F-actin) bundles, called stress fibers, are essential in cell attachment and detachment. For this reason, their mechanistic understanding provides crucial information to solve practical problems related to cell interactions with materials in tissue engineering. Detecting and counting actin-based structures in a cellular ensemble is a fundamental first step. In this research, we suggest a new method to characterize F-actin wrapping fibers from confocal fluorescence image stacks. As fluorescently labeled F-actin often envelope the fibers, we first propose to segment these fibers by diminishing an energy based on maximum flow and minimum cut algorithm. The actual actin is detected through the use of bilateral filtering followed by a thresholding step. Later, concave actin bundles are detected through a graph-based procedure that actually determines if the considered actin filament is enclosing the fiber.

Design and evaluation of artificial intelligence models for abnormal data detection and prediction

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.3-12
    • /
    • 2023
  • In today's system operation, it is difficult to detect failures and take immediate action in the case of a shortage of manpower compared to the number of equipment or failures in vulnerable time zones, which can lead to delays in failure recovery. In addition, various algorithms exist to detect abnormal symptom data, and it is important to select an appropriate algorithm for each problem. In this paper, an ensemble-based isolation forest model was used to efficiently detect multivariate point anomalies that deviated from the mean distribution in the data set generated to predict system failure and minimize service interruption. And since significant changes in memory space usage are observed together with changes in CPU usage, the problem is solved by using LSTM-Auto Encoder for a collective anomaly in which another feature exhibits an abnormal pattern according to a change in one by comparing two or more features. did In addition, evaluation indicators are set for the performance evaluation of the model presented in this study, and then AI model evaluation is performed.

  • PDF

Using Bayesian tree-based model integrated with genetic algorithm for streamflow forecasting in an urban basin

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.140-140
    • /
    • 2021
  • Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.

  • PDF