• Title/Summary/Keyword: Enhanced production

Search Result 2,365, Processing Time 0.028 seconds

Strain Improvement for Enhanced Production of Streptokinase and Streptodornase in Streptococcus sp.

  • HYUN, HYUNG-HWAN;YOON-BUM LEE;KYUNG-HWA SONG;JI-YOUNG JEON;HYUNE-HWAN LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.101-106
    • /
    • 1997
  • Strain improvement for the enhanced production of streptokinase and streptodornase in Streptococcus sp. ATCC 12449 was performed. Strain UB111, a hyperproductive mutant which was isolated by use of nitrosoguanidine and selection of colonies with large clear zones on DNase test agar plates supplemented with $1{\%}$ glucose and $0.5{\%}$ ammonium chloride, produced about 3 fold more streptokinase and streptodornase than the wild type when tested in shake flask fermentations. The enhanced production of both streptokinase and streptodornase was achieved by cultivating the mutant in a pH-controlled fermentor containing fermentation medium enriched with yeast extract ($2.1{\%}$). Under these conditions, the mutant produced 7300 units/ml of streptokinase and 800 units/ml of streptodornase.

  • PDF

Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

  • Rashid, Harun Ar;Jung, Hyun Yi;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.10
    • /
    • pp.33.1-33.11
    • /
    • 2018
  • As a process for commercial application, production of reducing sugar, antioxidant, and DNA protective compounds from shrimp-shell powder was investigated in a fed-batch biodegradation using Bacillus cereus EW5. The fed-batch biodegradation was operated in a 5-L bioreactor for 96 h according to three times pulse-feeding strategy. On the basis of the equal working volume (3 L), the fed-batch biodegradation showed a better production of the target compounds than the batch biodegradation, with higher cell density and shortened biodegradation period. The maximum values of the target compounds were 0.297 mg/mL of reducing sugar, 92.35% DPPH radical scavenging activity, 98.16% ABTS radical scavenging activity, and 1.55 reducing power at $A_{700}$, which were approximately 12.1, 3.4, 5.2, and 8.4% enhanced, respectively, compared with those obtained from the batch biodegradation. The fed-batch culture supernatant also showed the enhanced DNA damage inhibition activity than the batch culture supernatant. As a result, the fed-batch biodegradation accompanied by high cell density could produce more useful compounds, enabling an increase in the reutilization value of shrimp-shell waste.

Microbial Consortia in Oman Oil Fields: A Possible Use in Enhanced Oil Recovery

  • Al-Bahry, Saif N.;Elsahfie, Abdulkader E.;Al-Wahaibi, Yahya M.;Al-Bimani, Ali S.;Joshi, Sanket J.;Al-Maaini, Ratiba A.;Al-Alawai, Wafa J.;Sugai, Yuichi;Al-Mandhari, Mussalam
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2013
  • Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

Kinetic Analysis of CpG-Induced Mouse B Cell Growth and Ig Production

  • Kim, Young-Ha;Lee, Sang-Hoon;Yoo, Yung-Choon;Lee, Jung-Lim;Park, Jong-Hwan;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • Immune cells express toll-like receptors (TLRs) and respond to molecular patterns of various pathogens. CpG motif in bacterial DNA activates innate and acquired immune systems through binding to TLR9 of immune cells. Several studies reported that CpG can directly regulate B cell activation, differentiation, and Ig production. However, the role of CpG in B cell growth and Ig production is not fully understood. In this study, we analyzed the effect of CpG on the kinetics of mouse B cell viability, proliferation, and Igs production. Overall, CpG enhanced mouse B cell growth and production of Igs in a dose-dependent manner. Unlike LPS, 100 nM CpG (high dose) did not support TGF-${\beta}1$-induced IgA and IgG2b production. Moreover, 100 nM CpG treatment abrogated either LPS-induced IgM or LPS/TGF-${\beta}1$-induced IgA and IgG2b production, although B cell growth was enhanced by CpG under the same culture conditions. We subsequently found that 10 nM CpG (low dose) is sufficient for B cell growth. Again, 10 nM CpG did not support TGF-${\beta}1$-induced IgA production but, interestingly enough, supported RA-induced IgA production. Further, 10 nM CpG, unlike 100 nM, neither abrogated the LPS/TGF-${\beta}1$- nor the LPS/RA-induced IgA production. Taken together, these results suggest that dose of CpG is critical in B cell growth and Igs production and the optimal dose of CpG cooperates with LPS in B cell activation and differentiation toward Igs production.

Bioceramic Effects to Enhance Secondary Metabolites Production in Tissue Culture of Some Medicinal Plants

  • Kim, Yu-Jeong;Hwang, Baik;Ahn, Jun-Cheul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2004
  • We have investigated that a couple of soft ferrite ceramic powders having a spinal structure have shown the effect on growth and secondary metabolites production of some medicinal plants cultured in vitro. The addition of the ceramic powders as bare state to culture medium has stimulated the growth of Achyranthes japonica callus and plantlet, adventitious root of Hyoscyamus niger and Platycodon grandiflorum hairy root about 65, 75, 150 and 50%, respectively. Whereas Centella asiatica callus and plantlet, Scopolia parviflora hairy root, and Hyoscyamus albus adventitious root were not affected markedly. Moreover, the ceramic powder has enhanced the growth of H. niger adventitious roots even under conditions of irradiating alone without any direct contact between ceramic powder and media. Based on growth stimulation effect, the ceramic powders have enhanced the gross production of tropane alkaloid in H. niger adventitious root, and polyacetylene in P. grandiflorum hairy root about 35 and 30%, respectively.

Metabolic Engineering Strategies of Clostridia for Butyric Acid Production (부티르산 생산을 위한 클로스트리듐 대사공학 전략)

  • Noh, Hyeon Ji;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2017
  • Butyric acid (C4 carboxylic acid) is used as an important compound in food, pharmaceutical, and chemical industries. Currently, butyric acid is mainly produced at the industrial scale through the petrochemical processes. Bio-based butyric acid has also gained attention, because the consumer prefers the food and pharmaceutical ingredients that are produced through fermentation. Clostridia is one of the well-known butyric acid producers, and massively engineered for enhanced production of butyric acid. In this paper, we reviewed the metabolic pathway of clostridia, especially Clostridium acetobutylicum and Clostridium tyrobutyricum, and summarized the metabolic engineering strategies of the strains for enhanced production of butyric acid.

Enhanced Production of hGM-CSF by Immobilized Transgenic Plant Cell Cultures (형질전환된 식물세포에서 고정화 방법을 통한 hCM-CSF의 생산성 증대 연구)

  • Noha, Yun-Sook;Nama, Hyung-Jin;Choi, Hong-Yeol;Tak, Sa-Ra;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • Plant cell immobilization can protect plant cells from shear forces and increase the stability of gene. An additional advantage of immobilization is the easiness for performing continuous culture with cell recycling. Therefore plant cell immobilization can overcome the limitations of plant cell applications. In addition, target protein should be selected from pharmaceutical proteins to get rid of low expression level problem. The enhanced production of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was investigated in immobilized Nicotiana tabacum suspension cell cultures. When the cells were immobilized in polyurethane foam, specific production of hGM-CSF was higher than that in alginate bead immobilization. Optimum continuous culture condition was the addition of 60 g/L sucrose in growth media with exchanging media every 6 day. Under the same condition, specific hGM-CSF production was 7 times higher in a 500-mL spinner flask than that in 100-mL Erlenmeyer flasks. Therefore, development of an effective immobilization process would be possible when the advantage of easy cell recycling was used. Consequently, enhanced production of target proteins could be possible in immobilized continuous cultures when the advantages of immobilization were applied.

Signaling Through the Murine T Cell Receptor Induces IL-17 Production in the Absence of Costimulation, IL-23 or Dendritic Cells

  • Liu, Xikui K.;Clements, James L.;Gaffen, Sarah L.
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.339-347
    • /
    • 2005
  • IL-17 (IL-17A or CTLA-8) is the founding member of a novel family of inflammatory cytokines, and emerging evidence indicates that it plays a central role in inflammation and autoimmunity. IL-17 is made primarily, if not exclusively by T cells, but relatively little is known about how its expression is regulated. In the present study, we examined the requirements and mechanisms for IL-17 expression in primary mouse lymphocytes. Like many cytokines, IL-17 is induced rapidly in primary T cells after stimulation of the T cell receptor (TCR) through CD3 crossinking. Surprisingly, however, the pattern of regulation of IL-17 is different in mice than in humans, because "costimulation" of T cells through CD28 only mildly enhanced IL-17 expression, whereas levels of IL-2 were dramatically enhanced. Similarly, several other costimulatory molecules such as ICOS, 4-1BB and CD40L exerted only very weak enhancing effects on IL-17 production. In agreement with other reports, IL-23 enhanced CD3-induced IL-17 expression. However, IL-17 production can occur autonomously in T cells, as neither dendritic cells nor IL-23 were necessary for promoting short-term production of IL-17. Finally, to begin to characterize the TCR-mediated signaling pathway(s) required for IL-17 production, we showed that IL-17 expression is sensitive to cyclosporin-A and MAPK inhibitors, suggesting the involvement of the calcineurin/NFAT and MAPK signaling pathways.

Enhanced Strobilus Production and Metabolic Alterations in Larix kaempferi by Stem Girdling (환상박피 처리에 의한 일본잎갈나무의 착과유도 효과와 대사물질의 변화)

  • Lee, Wi Young;Park, Eung-Jun;Kang, Jin Taek;Ahn, Jin-Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.367-373
    • /
    • 2011
  • The demand for Japanese larch (Larix kaempferi) seeds has increased in Korea but their supply has been limited due to sporadic natural seed production. To enhance seed production, stem girdling was applied to 42-yearold Japanese larches, resulting in remarkable enhancement of strobilus production in terms of the rate of strobilusbearing tree and the number of strobilus per tree. Metabolic alterations in the girdled and the control trees were interrogated through GC/MS analysis. In the girdled tree, the contents of 14 individual metabolites including polar and non-polar compounds were significantly increased compared to the control. In the cambium and phloem tissues of girdled trees, the contents of pimaric acid, phosphoric acid, sucrose, and two different unknown compounds were enhanced, while the levels of malic acid, inositol, two different disaccharide, 11-trans-Octadecenoic acid and 4 different unknown compounds were decreased compared to the control. The girdled trees showed to be contained significantly higher amount of total nitrogen in the cambium and phloem tissues than that of control trees. Although the role of individual metabolites on enhanced strobilus production remains unclear, the approach presented in this study might provide useful information in elucidating metabolic network modulation induced by girdling and will be further applied for enhanced strobilus production in Japanese larch trees.

Novel Sorption Enhanced Reaction Process for Direct Production of Fuel-Cell Grade $H_2$ from Synthesis Gas (합성가스로부터 연료전지급 수소의 직접 생산을 위한 흡착분리 반응 동시 공정)

  • Lee, Ki-Bong;Jeon, Sang-Goo;Na, Jeong-Geol;Ryu, Ho-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.745-748
    • /
    • 2009
  • 수소는 지구상에 풍부하게 존재하는 원소로 최근 수소경제시대에 대한 기대와 함께 청정 에너지 carrier로 주목받고 있다. 본 연구에서는 고순도 수소 생산을 위해 water gas shift (WGS) 반응과 $CO_2$의 분리를 하나의 unit operation의 형태로 수행하는 신개념의 thermal swing sorption enhanced reaction (TSSER) 공정의 타당성을 테스트하는데 목적을 두고 있다. Le Chatelier 원리를 기본으로 하는 흡착분리 동시 반응 (sorption enhanced reaction, SER)에서는 수소생산 반응의 열역학적 한계를 극복할 수 있고 정반응의 속도를 증대시킬 수 있다. 본 연구에서는 $K_2CO_3$가 첨가된 hydrotalcite에 대한 고온에서의 $CO_2$ 화학흡착 평형 및 거동 데이터를 실험을 통하여 측정하였다. 또한 WGS 상용촉매와 화학 흡착제를 이용하여 흡착분리 동시 반응을 실험과 수치해석 시뮬레이션으로 수행하였고, 연구결과로부터 연료전지에 사용할 수 있는 고순도의 수소 (~10 ppm CO)를 직접 생산할 수 있으며, 동시에 고압상태의 $CO_2$를 고순도로 포집할 수 있음을 확인할 수 있었다. 고압, 고순도의 $CO_2$ 포집은 이후 $CO_2$ 저장에 용이하게 이용되어 온실가스 저감에 기여할 수 있을 것으로 기대된다.

  • PDF