• Title/Summary/Keyword: Enhanced layer

Search Result 1,444, Processing Time 0.03 seconds

Fabrication of ZnO inorganic thin films by using UV-enhanced Atomic Layer Deposition

  • Song, Jong-Su;Yun, Hong-Ro;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.312.1-312.1
    • /
    • 2016
  • We have deposited ZnO thin films by ultraviolet (UV) enhanced atomic layer deposition using diethylznic (DEZ) and water (H2O) as precursors with UV light. The atomic layer deposition relies on alternating dose of the precursor on the surface and subsequent chemisorption of the precursors with self-limiting growth mechanism. Though ALD is useful to deposition conformal and precise thin film, the surface reactions of the atomic layer deposition are not completed at low temperature in many cases. In this experiment, we focused on the effects of UV radiation during the ALD process on the properties of the inorganic thin films. The surface reactions were found to be complementary enough to yield uniform inorganic thin films and fully react between DEZ and H2O at the low temperature by using UV irradiation. The UV light was effective to obtain conductive ZnO film. And the stability of TFT with UV-enhanced ZnO was improved than ZnO by thermal ALD method. High conductive UV-enhanced ZnO film have the potential to applicability of the transparent electrode.

  • PDF

Analysis of laboratory test results on the constellation ratio in hierarchical modulation based AT-DMB (계층변조 기반 AT-DMB의 성상비에 따른 LAB 테스트 결과 분석)

  • Lee, Jae-Hong;Bae, Jae-Hwui;Choi, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.721-732
    • /
    • 2009
  • AT-DMB system has been developed to increase data rate up to double of conventional T-DMB in same bandwidth while maintaining backward compatibility. The AT-DMB system adopted hierarchical modulation which adds BPSK signal or QPSK signal as enhanced layer to existing DQPSK signal. The enhanced layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of existing T-DMB service area. But this causes the enhanced layer signal of AT-DMB susceptible to fading effect in transmission channel. A turbo code which has powerful error correction capability is applied to the enhanced layer signal of the AT-DMB system for compensating channel distortion. We developed the prototype AT-DMB transmitter and receiver systems for performance evaluation. LAB test for analysing the effect of constellation ratio between existing base layer signal and enhancement layer signal, was conducted and the measurement results are shown with analysis comments.

Fabrication of Conductive ZnO Thin Filn Using UV-Enhanced Atomic Layer Deposition

  • Yang, Da-Som;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.373-373
    • /
    • 2012
  • We fabricated conductive zinc oxide (ZnO) thin film at low temperature by UV-enhanced atomic layer deposition. The atomic layer deposition relies on alternate pulsing of the precursor gases onto the substrate surface and subsequent chemisorption of the precursors. In this experiment, diethylzinc (DEZ) and $H_2O$ were used as precursors with UV light. The UV light was very effective to improve the conductivity of the ZnO thin film. The thickness, transparency and resistivity were investigated by ellisometry, UV-visible spectroscopy and Four-point probe.

  • PDF

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

Nonlinear analysis based optimal design of double-layer grids using enhanced colliding bodies optimization method

  • Kaveh, A.;Moradveisi, M.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.555-576
    • /
    • 2016
  • In this paper an efficient approach is introduced for design and analysis of double-layer grids including both geometrical and material nonlinearities, while the results are compared with those considering material nonlinearity. Optimum design procedure based on Enhanced Colliding Bodies Optimization method (ECBO) is applied to optimal design of two commonly used configurations of double-layer grids. Two ranges of spans as small and big sizes with certain bays of equal length in two directions are considered for each type of square grids. ECBO algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specifications and displacement constraints are imposed on these grids.

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

Enhanced RBF Network by Using Auto- Turning Method of Learning Rate, Momentum and ART2

  • Kim, Kwang-baek;Moon, Jung-wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • This paper proposes the enhanced REF network, which arbitrates learning rate and momentum dynamically by using the fuzzy system, to arbitrate the connected weight effectively between the middle layer of REF network and the output layer of REF network. ART2 is applied to as the learning structure between the input layer and the middle layer and the proposed auto-turning method of arbitrating the learning rate as the method of arbitrating the connected weight between the middle layer and the output layer. The enhancement of proposed method in terms of learning speed and convergence is verified as a result of comparing it with the conventional delta-bar-delta algorithm and the REF network on the basis of the ART2 to evaluate the efficiency of learning of the proposed method.

  • PDF

Self-healing Anticorrosion Coatings for Gas Pipelines and Storage Tanks

  • Luckachan, G.E.;Mittal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.209-216
    • /
    • 2016
  • In the present study, chitosan based self-healing anticorrosion coatings were prepared by layer by layer (lbl) addition of chitosan (Ch) and polyvinyl butyral (PVB) on mild carbon steel substrate. Chitosan coatings exhibited enhanced coating stability and corrosion resistance in aggressive environments by the application of a PVB top layer. Chitosan layer in the lbl coatings have been modified by using glutaraldehyde (Glu) and silica ($SiO_2$). Performance of different coatings was tested using electrochemical impedance spectroscopy and immersion test. The best anticorrosion performance was observed in case of 10 % Ch_$SiO_2$_PVB coatings, which withstand immersion test over 25 days in 0.5 M salt solution without visible corrosion. 10 % Ch_$SiO_2$ coatings without the PVB top layer didn't last more than 3days. Application of PVB top layer sealed the defects in the chitosan pre-layer and improved its hydrophobic nature as well. Raman spectra and SEM of steel surfaces after corrosion study and removal of PVB_Ch/Glu_PVB coatings showed a passive layer of iron oxide, attributing to the self-healing nature of these coatings. Conducting particle like graphene reinforcement of chitosan in the lbl coatings enhanced corrosion resistance of chitosan coatings.

Low-Temperature Growth of $SiO_2$ Films by Plasma-Enhanced Atomic Layer Deposition

  • Lim, Jung-Wook;Yun, Sun-Jin;Lee, Jin-Ho
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.118-121
    • /
    • 2005
  • Silicon dioxide ($SiO_2$) films prepared by plasma-enhanced atomic-layer deposition were successfully grown at temperatures of $100\;to\;250^{\circ}C$, showing self-limiting characteristics. The growth rate decreases with an increasing deposition temperature. The relative dielectric constants of $SiO_2$ films are ranged from 4.5 to 7.7 with the decrease of growth temperature. A $SiO_2$ film grown at $250^{\circ}C$ exhibits a much lower leakage current than that grown at $100^{\circ}C$ due to its high film density and the fact that it contains deeper electron traps.

  • PDF

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF