• Title/Summary/Keyword: Enhanced geothermal system

Search Result 33, Processing Time 0.018 seconds

Development of Project Management System for Geothermal Well Construction (지열발전 시추공 구축 프로젝트관리시스템 개발)

  • Kim, Kwang-Yeom;Lee, Seung-Soo
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • Enhanced Geothermal System (EGS) among geothermal system types enables to produce sustainable energy even in non-volcanic region while conventional geothermal energy has been restricted to obtain only from hot and permeable formation such as in volcanic regions. Successful EGS project in terms of economy, however, can be expected only when the project is managed effectively considering most of influencing factors (e.g., tangible and intangible resources, cost, time, risks, etc.). In particular, well construction is of the utmost importance in geothermal project as it dominantly influences on time and cost in the whole project. Therefore, when it comes to viable geothermal project without abundant experience, managing drilling economically and efficiently is inevitable. In this study, a project management system for well construction in geothermal project based on project control system including work breakdown structure and cost account was developed to predict and assess the performance of drilling and to visualize the progress.

EGS Power Generation and Hydraulic Stimulation (EGS 지열발전과 저류층 수리자극 기술)

  • Min, Ki-Bok;Song, Yoonho;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.506-520
    • /
    • 2013
  • While geothermal energy provides the only base-load power among renewable energy sources, its development has been carried out predominantly in volcanic area. EGS (Enhanced Geothermal System) is a ubiquitous technology that can allow the geothermal power generation virtually in any area. This manuscript introduces the current state-of-the-art of EGS development in the world and presents the hydraulic stimulation technology and associated microseismicity which are key technical component in EGS. Finally this paper suggests the key research areas required in Korea for further development of EGS.

Case Studies of Enhanced Geothermal System: Fenton Hill in USA and Hijiori in Japan (인공저류층 지열시스템(EGS) 연구사례: 미국 Fenton Hill과 일본 Hijiori 사례 연구)

  • Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2013
  • The importance of renewable energy has increased continuously due to the energy insecurity and the necessity of reducing carbon dioxide which is causing global climate change. In such a situation, the Pohang Enhanced Geothermal System (EGS) power plant project which is launched in December 2010 shall be a new opportunity for the development of EGS related technologies in Korea. In this paper, the case studies of Fenton Hill project in the USA and Hijiori project in Japan are introduced in order to help a part of the domestic EGS demonstration project. As a result, it could be helpful to minimize the trial and error of the domestic EGS project by acquiring the achievements and limitations of existing EGS projects.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

A Study on Deep Geothermal Energy and Potential of Geothermal Power Generation in Mongolia (몽골의 심부 지열에너지 자원과 지열발전에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Kiem, Young-Seek;Hahn, Chan;Park, Yu-Chul;Mok, Jong-Gu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Mongolia has three(3) geothermal zones and eight(8) hydrogeothermal systems/regions that are, fold-fault platform/uplift zone, concave-largest subsidence zone, and mixed intermediate-transitional zone. Average temperature, heat flow, and geothermal gradient of hot springs in Arhangai located to fold-fault platform/uplift zone are $55.8^{\circ}C$, 60~110 mW/m2 and $35{\sim}50^{\circ}C/km$ respectively and those of Khentii situated in same zone are $80.5^{\circ}C$, 40~50 mW/m2, and $35{\sim}50^{\circ}C/km$ separately. Temperature of hydrothermal water at depth of 3,000 m is expected to be about $173{\sim}213^{\circ}C$ based on average geothermal gradient of $35{\sim}50^{\circ}C/km$. Among eight systems, Arhangai and Khentii located in A type hydrothermal system, Khovsgol in B type, Mongol Altai plateau in C type, and Over Arhangai in D type are the most feasible areas to develop geothermal power generation by Enhanced Geothermal System (EGS). Potential electric power generation by EGS is estimated about 2,760 kW at Tsenher, 1,752 kW at Tsagaan Sum, 2,928 kW at Khujir, 2,190 kW at Baga Shargaljuut, and 7,125 kW at Shargaljuut.

Status and Outlook of Geothermal Energy Exploitation Technologies (지열에너지자원 개발, 활용 기술의 동향 및 전망)

  • Song, Yoon-Ho;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.20-23
    • /
    • 2006
  • Geothermal energy is the natural heat of the Earth. Enormous amounts of thermal energy are continuously generated by the decay of radioactive isotopes of underground rocks and stored in the Earth's interior. Therefore, geothermal energy is one of the most important sustainable energy resources. Recent trends of geothermal energy exploitation technologies focus on the Earth scientific approach to geothermal heat pump system, enhanced geothermal system, aquifer thermal energy storage, underground thermal energy storage, and fluid/heat flow model ing for geothermal wells. Geothermal heat pump distribution in Korea is still in its starting phase in terms of areal utilization sense, we, however, expect to come up with national supply of over 1,000,000 toe by 2020

  • PDF

The Thermal conductivity analysis and performance evaluation on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체의 열전도분석 및 구조안전성 검토)

  • Lee, Seung-Ha;Park, Jeong-Sik;Lee, Seok-Jin;Kim, Bong-Chan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. For the feasibility study on geothermal snow melting system, analysis of the ground melting point when operating system, life evaluation of pavements and safety evaluation of pipes are performed.

Enhanced Geothermal System Case Study: The Soultz Project (EGS 지열발전 연구사례: The Soultz Project)

  • Lee, Tae Jong;Song, Yoonho
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.561-571
    • /
    • 2013
  • Various experiences on enhanced geothermal system (EGS) has been accumulated from the Soultz project through various scientific experiments and research activities for more than 20 years since it started in the year of 1984 until the 1.5 MW Organic Rankine Cycle (ORC) binary power plant has been built up in Soultz-sous-$\hat{e}$ area, France. They have been applied to Cooper basin in Australia, Landau and Insheim in Germany and so forth. This report summaries the experiences from Soultz in the aspect of artificial reservoir creation, expecting to be helpful for reducing any trial and errors or unnecessary expenses in ongoing Korean EGS project in Pohang area, where the geological features are similar to Soultz area.

EGS field case studies - UK Rosemanowes and Australian Cooper Basin projects (EGS 실증연구사례 - 영국 Rosemanowes 프로젝트와 호주 Cooper Basin 프로젝트)

  • Min, Ki-Bok;Xie, Linmao;Kim, Hanna;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.21-31
    • /
    • 2014
  • In order to generate electricity from geothermal energy for non-volcanic region, the concept of enhanced geothermal system (EGS) is introduced which forms an artificial reservoir by injecting high pressure fluid to 5 km deep and circulating geothermal fluid through the reservoir. Demonstration studies have been conducted in various countries and regions for determining the feasibility of EGS. In this technical note, experiences, errors, and implications of EGS demonstration projects in UK Rosemanowes and Australia Cooper Basin which have been carried out since 2002 are introduced to be used for the EGS demonstration project in Korea.

Research Background and Plan of Enhanced Geothermal System Project for MW Power Generation in Korea (MW급 EGS 지열발전 상용화 기술개발사업의 추진 배경 및 계획)

  • Yoon, Woon-Sang;Song, Yoon-Ho;Lee, Tae-Jong;Kim, Kwang-Yeom;Min, Ki-Bok;Cho, Yong-Hee;Jeon, Jong-Ug
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2011
  • Geothermal energy is believed to be an important source among the renewable energy sources to provide the base load electricity. Although there has been a drastic increase in the use of geothermal heat pump in Korea, there is no geothermal power plant in operation in Korea. Fortunately, the first EGS (Enhanced Geothermal System) Project in Korea has started in Dec 2010. This five year project is divided into two stages; two years for exploration and drilling of 3 km depth to confirm the minimum target temperature of 100 degrees, and another three years composed drilling 5 km doublet, hydraulic stimulation of geothermal reservoir with expected temperature of 180 degrees (40 kg/s) and construction of MW geothermal power plant in the surface. This EGS project would be a landmark effort that invited a consortium of industry, research institutes and university with expertises in the fields of geology, hydrogeology, geophysics, geomechanics and plant engineering.