• Title/Summary/Keyword: Engines testing

Search Result 76, Processing Time 0.031 seconds

The Effect of Oil-Starvation on the Lubrication Characteristics of High-Speed Bearing: Part II-Roller Bearing (가스터어빈용 고속 베어링의 Oil-Starvation 윤활특성: Part II-Roller Bearing)

  • Kim, Ki-Tae
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.76-81
    • /
    • 1997
  • The lubrication characteristics of high-speed roller bearings at oil-starvation have been investigated empirically using the bearings employed in small industrial gas turbine engines. Testing was done by simulating the oil-starvation conditions in engines, such as stopping the oil-supply to the bearing during normal operating, starting without oil-supply at atmospheric temperature, and accelerating with oil-supply at atmospheric temperature. During testing, the temperature of bearing, the power consumption, and the rotating resistance of the bearing were measured. From this study, on the contrary to the ball bearing, it was found that the resistance of the bearing was higher at the regime of without oil-supply than that at the regime of with oil-supply, despite less power consumption.

Advanced Lubricants for Heat Engines

  • Hsu, S.M.;Li, H.;Perez, J.M.;Ku, C.S.;Wang, J.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.47-54
    • /
    • 1995
  • An advanced liquid lubricants for heat engines has been developed and tested successfully in a prototype engine. The lubricant possesses superior oxidation stability and high temperature stability and is capable of surviving for a minimum of three minutes at 425$^{\circ}$C (800$^{\circ}$C) at the ring zone and maintains stability at an oil sump temperature of 171$^{\circ}$C. The lubricant has been evaluated by the Cummins Engine Co. Out of a field of several dozens of lubricant, six lubricant was selected for a prototype 200 hours endurance testing. The NIST lubricant was one of the two lubricants that successfully finished the endurance testing. This paper describes the key lubricant considerations including oxidation and thermal stability, volatility, deposit control. The engine test conditions and the results will be presented.

Performance optimization control of supersonic variable cycle engines

  • Tagashira, Takeshi;Sugiyama, Nanahisa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.779-783
    • /
    • 2004
  • First this paper introduces an advanced FADEC (Full Authority Digital Electric Control) for current and future jet engines.It is designed to realize not only stable thrust control, but also performance improvement, reliability enhancement, service life extension, etc. It can be built by using current micro-processor with high computational power and there exists no difficulties but reliability problem of the micro- processor. Next, the simulation results of SFC minimization control are shown. The target engine is a supersonic, low-bypass ratio, 2-spool, combined cycle turbofan, designated as HYPR90T, which consists of a turbo engine for under Mach 3 flight and a ram engine for over Mach 3 flight. he results can then be used for performance optimization of the engine, which plays important role in the advanced FADEC.

  • PDF

Dynamic prediction fatigue life of composite wind turbine blade

  • Lecheb, Samir;Nour, Abdelkader;Chellil, Ahmed;Mechakra, Hamza;Ghanem, Hicham;Kebir, Hocine
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.673-691
    • /
    • 2015
  • In this paper we are particularly focusing on the dynamic crack fatigue life of a 25 m length wind turbine blade. The blade consists of composite materiel (glass/epoxy). This work consisted initially to make a theoretical study, the turbine blade is modeled as a Timoshenko rotating beam and the analytical formulation is obtained. After applying boundary condition and loads, we have studied the stress, strain and displacement in order to determine the critical zone, also show the six first modes shapes to the wind turbine blade. Secondly was addressed to study the crack initiation in critical zone which based to finite element to give the results, then follow the evolution of the displacement, strain, stress and first six naturals frequencies a function as crack growth. In the experimental part the laminate plate specimen with two layers is tested under cyclic load in fully reversible tensile at ratio test (R = 0), the fast fracture occur phenomenon and the fatigue life are presented, the fatigue testing exerted in INSTRON 8801 machine. Finally which allows the knowledge their effect on the fatigue life, this residual change of dynamic behavior parameters can be used to predicted a crack size and diagnostic of blade.

Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines (연료분사식 자동차엔진의 퍼지가변구조 제어시스템)

  • Nam, Sae-Kyu;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.

Scramjet Research at JAXA, Japan

  • Chinzei Nobuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.1-1
    • /
    • 2005
  • Japan Aerospace Exploration Agency(JAXA) has been conducting research and development of the Scramjet engines and their derivative combined cycle engines as hypersonic propulsion system for space access. Its history will be introduced first, and its recent advances, focusing on the engine performance progress, will follow. Finally, future plans for a flight test of scramjet and ground test of combined cycle engine will be introduced. Two types of test facilities for testing those hypersonic engines. namely, the 'Ramjet Engine Test Facility (RJTF)' and the 'High Enthalpy Shock Tunnel (HIEST)' were designed and fabricated during 1988 through 1996. These facilities can test engines under simulated flight Mach numbers up to 8 for the former, whereas beyond 8 for the latter, respectively. Several types of hydrogen-fueled scramjet engines have been designed, fabricated and tested under flight conditions of Mach 4, 6 and 8 in the RJTF since 1996. Initial test results showed that the thrust was insufficient because of occurrence of flow separation caused by combustion in the engines. These difficulty was later eliminated by boundary-layer bleeding and staged fuel injection. Their results were compared with theory to quantify achieved engine performances. The performances with regards to combustion, net thrust are discussed. We have reached the stage where positive net thrust can be attained for all the test coditions. Results of these engine tests will be discussed. We are also intensively attempting the improvement of thrust performance at high speed condition of Mach 8 to 15 in High Enthalpy Shock Tunnel (HIEST). Critical issues for this purposemay be air/fuel mixing enhancement, and temperature control of combustion gas to avoid thermal dissociation. To overcome these issues we developed the Hypermixier engine which applies stream-wise vortices for mixing enhancement, and the M12-engines which optimizes combustor entrance temperature. Moreover, we are going to conduct the flight experiment of the Hypermixer engine by utilizing flight test infrastructure (HyShot) provided by the University of Queensland in fall of 2005 for comparison with the HIEST result. The plan of the flight experiment is also presented.

  • PDF

Utrasonic testing system for Automobile Engines (자동차 엔진 접합 부위 검사 시스템)

  • 이선휘;이순흠
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.458-461
    • /
    • 2000
  • 알루미늄 자동차 엔진은 알루미늄 엔진 블록에 라이너가 삽입되어 접합된다. 접합시 라이너와 엔지 블록의 간격이 5$mu extrm{m}$이내이어야 하며 접합률이 30% 이상이면 접합상태가 양호하다고 한다. 라이너의 접합상태를 검사할 수 있는 비파괴 검사장비는 국내에서 개발되어 상용화된 것이 거의 없는 상황이다. 6개의 라이너의 접합상태를 자동으로 검사하는 컴퓨터 내장형 초음파 검사 시스템을 개발하였다.

  • PDF

Improving the Measurement Uncertainty of Altitude Test Facility for Gas Turbine Engines (가스터빈엔진 고공성능시험설비의 측정불확도 개선)

  • Lee, Dae-Sung;Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Yang, Soo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1496-1502
    • /
    • 2002
  • An Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute in October 1999 and has been being operated for altitude testing of gas turbine engines of 3,000 Ibf class or less. The AETF has been calibrated using several engines such as J69 of Teledyne Co. as a facility checkout engine. Uncertainty analyses on the air flow rate and thrust were performed using the test results, according to ASME PTC 19.1-1998. Several modifications on the facility and test method were made in order to improve the measurement uncertainty to a satisfactory level over the whole operating envelop. Spatial distributions of pressure and temperature were measured, sensors were substituted by more accurate ones, inlet duct was modified to refine the flow quality, and pressure control logic was revised to remove the cell pressure fluctuation. As a result, the uncertainty of the air flow measurement was improved by 0.1% over all the test conditions, and the net thrust measurement by up to 3%. The improved measurement uncertainties of air flow and thrust are 0.68~O.73% and 0.4~1.3%, respectively.

Simulation of the Gas Exchange Process in a Two - Stroke Cycle Diesel Engine (2행정 사이클 디젤기관의 가스교환과정 시뮬레이션)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.104-112
    • /
    • 1994
  • The scavenging efficiency has a great influence on the performance of a diesel engine, especially slow two-stroke diesel engines which are usually used as a marine propulsion power plant. And this is greatly affected by the conditions in the cylinder, scavenging manifold and exhaust manifold during the gas exchange process. There are many factors to affect on the scavenging efficiency and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging efficiency, due to the high costs associated with redesign and testing. In this paper, a three-zone scavenging model for two-stroke uniflow engines was developed to link a control-volume-type engine simulation program for performance prediction of long-stroke marine engines. In this model it was attempted to simulate the three different regions perceived to exist inside the cylinder during scavenging, namely the air, mixing and combystion products regions, by modeling each region as a seperate control volume. Finally the scavenging efficiency was compared with three type of scavenging modes, that is, pure displacement, partial mixing and prefect mixing.

  • PDF

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.