• 제목/요약/키워드: Engineering in English

검색결과 336건 처리시간 0.024초

Interactive Typography System using Combined Corner and Contour Detection

  • Lim, Sooyeon;Kim, Sangwook
    • International Journal of Contents
    • /
    • 제13권1호
    • /
    • pp.68-75
    • /
    • 2017
  • Interactive Typography is a process where a user communicates by interacting with text and a moving factor. This research covers interactive typography using real-time response to a user's gesture. In order to form a language-independent system, preprocessing of entered text data presents image data. This preprocessing is followed by recognizing the image data and the setting interaction points. This is done using computer vision technology such as the Harris corner detector and contour detection. User interaction is achieved using skeleton information tracked by a depth camera. By synchronizing the user's skeleton information acquired by Kinect (a depth camera,) and the typography components (interaction points), all user gestures are linked with the typography in real time. An experiment was conducted, in both English and Korean, where users showed an 81% satisfaction level using an interactive typography system where text components showed discrete movements in accordance with the users' gestures. Through this experiment, it was possible to ascertain that sensibility varied depending on the size and the speed of the text and interactive alteration. The results show that interactive typography can potentially be an accurate communication tool, and not merely a uniform text transmission system.

텍스트마이닝을 활용한 보건의료산업학회지의 토픽 모델링 및 토픽트렌드 분석 (Analysis on Topic Trends and Topic Modeling of KSHSM Journal Papers using Text Mining)

  • 조경원;배성권;우영운
    • 보건의료산업학회지
    • /
    • 제11권4호
    • /
    • pp.213-224
    • /
    • 2017
  • Objectives : The purpose of this study was to analyze representative topics and topic trends of papers in Korean Society and Health Service Management(KSHSM) Journal. Methods : We collected English abstracts and key words of 516 papers in KSHSM Journal from 2007 to 2017. We utilized Python web scraping programs for collecting the papers from Korea Citation Index web site, and RStudio software for topic analysis based on latent Dirichlet allocation algorithm. Results : 9 topics were decided as the best number of topics by perplexity analysis and the resultant 9 topics for all the papers were extracted using Gibbs sampling method. We could refine 9 topics to 5 topics by deep consideration of meanings of each topics and analysis of intertopic distance map. In topic trends analysis from 2007 to 2017, we could verify 'Health Management' and 'Hospital Service' were two representative topics, and 'Hospital Service' was prevalent topic by 2011, but the ratio of the two topics became to be similar from 2012. Conclusions : We discovered 5 topics were the best number of topics and the topic trends reflected the main issues of KSHSM Journal, such as name revision of the society in 2012.

단어 구분 및 인식 알고리즘을 이용한 안드로이드 플랫폼 기반의 멀티 성경 애플리케이션 (A Multi-Bible Application on an Android Platform Using a Word Tokenization and Recognition Algorithm)

  • 강성모;강명수;김종면
    • 대한임베디드공학회논문지
    • /
    • 제6권4호
    • /
    • pp.215-221
    • /
    • 2011
  • Mobile phones, which were used for simply calling and sending text messages, have recently moved to application-oriented digital devices such as smart phones and tablet phones. The rapid increase of smart and tablet phones which can offer advanced ability and run a variety of applications based on Java requires various digital multimedia content activities. These days, there are more than 2.2 billions of Christians around the world. Among them, more than 300 millions of people live in Asian, and all of them have and read the bible. If there is an application for the bible which translates from English to their own languages, it could be very helpful. With this reason, this paper proposes a multi-bible application that supports various languages. To do this, we implemented an algorithm that recognize sentences in the bible as word by word. The algorithm is essentially composed of the following three functions: tokenizing sentences in the bible into word by word (word tokenization), recognizing words by using touch event (word recognition), and translating the selected words to the desired language. Consequently, the proposed multi-bible application supports language translation efficiently by touching words of sentences in the bible.

공과대학 신입생의 핵심역량 인식수준을 통한 공학교육방향 연구 (The Study on Proper Way for Engineering University Education: Based on the Perception of Current Competencies and Expected Competencies of Engineering Freshmen)

  • 이경희;권혁홍;이정례;이성진
    • 공학교육연구
    • /
    • 제13권6호
    • /
    • pp.57-71
    • /
    • 2010
  • 본 연구는 대학교육을 통하여 획득해야 하는 핵심역량들을 추출하여 공과대학 신입생들이 인식하는 현재의 역량수준과 기대하는 역량수준을 조사하고 공과대학 교육의 방향성을 탐색해 보고자 하는데 목적이 있다. 핵심역량에 대한 문헌분석을 통해서, '전공능력', '교양능력', '외국어능력', '기초수학능력', '인간소통능력'의 5가지를 공학교육의 목표와 내용이 되어야 할 핵심 역량으로 추출하였다. 이를 연구도구화 한 뒤, C대학교 공과대학 신입생 584명을 대상으로 핵심역량에 대한 현재인식수준과 기대인식수준을 조사 연구하였다. 연구 결과, 첫째, 신입생들은 모든 역량에서 현재 역량수준이 낮다고 인식하고 있었으며, 특히 '외국어 역량'에 대한 인식수준이 가장 낮았다. 기대인식수준에 대한 교육요구도 '외국어능력'이 가장 높았고, '전공능력'은 두 번째로 높았다. 둘째, 신입생들의 하위특성을 성별, 고등학교 계열별, 출신고등학교의 지역별, 대학입학전형 유형별, 수능 수리유형별로 차이검증을 실시한 결과, 하위특성별로 현재인식수준과 기대인식수준간에 유의미한 차이가 있었다. 연구결과를 토대로, 본 연구는 공과대학 교육의 방향으로 외국어(영어)교육의 강화, 학습자의 하위 특성에 따른 개인차 해소를 위한 다양한 교육프로그램 설계 및 실행, 전공능력뿐 아니라 교양능력 및 인간소통능력의 중요성에 대한 인식 제고와 관련 프로그램의 강화, 교수-학습과정에 대한 피드백 자료 축적을 통한 공학 교육프로그램의 지속적인 수정 보완작업, 공학교육과정과 특별프로그램을 통한 진로교육의 활성화를 제언하였다.

  • PDF

기계학습 분류기의 예측확률과 만장일치를 이용한 한국어 서답형 문항 자동채점 시스템 (Automated Scoring System for Korean Short-Answer Questions Using Predictability and Unanimity)

  • 천민아;김창현;김재훈;노은희;성경희;송미영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.527-534
    • /
    • 2016
  • 최근 정보화 사회에서는 단순 암기보다는 문제 해결 능력과 종합적인 사고력을 바탕으로 창의적인 생각을 할 수 있는 인재를 요구한다. 이에 따라 교육과정도 학생들의 종합적인 사고력을 판단할 수 있는 서답형 문항을 늘리는 방향으로 변하고 있다. 그러나 서답형 문항의 경우 채점자의 주관에 의존하여 채점이 진행되기 때문에, 채점 결과의 일관성을 확보하기 어렵다는 단점이 있다. 이런 점을 해결하기 위해 해외에서는 기계학습을 이용한 자동채점 시스템을 채점 도구로 사용하고 있다. 한국어는 영어와 언어학적으로 다른 분류에 속하므로 영어권에서 사용하는 자동채점 시스템을 한국어에 그대로 적용할 수 없다. 따라서 한국어 체계에 맞는 자동채점 시스템의 개발이 필요하다. 본 논문에서는 기계학습 분류기의 예측확률과 만장일치 방법을 사용한 한국어 서답형 문항 자동채점 시스템을 소개하고, 자동채점 시스템을 이용한 채점 결과와 교과 전문가의 채점 결과를 비교하여 자동채점 시스템의 실용성을 검증한다. 본 논문의 실험을 위해 2014년 국가수준 학업성취도 평가의 국어, 사회, 과학 교과의 서답형 문항을 사용했다. 평가 척도로 피어슨 상관계수와 카파계수를 사용했다. 채점자가 개입했을 때와 개입하지 않았을 때의 상관계수 모두 0.7 이상으로 강한 양의 상관관계를 보였다. 이는 자동채점 시스템이 교과 전문가가 채점한 결과와 유사한 방향으로 답안에 점수를 부여한 것이므로 자동채점 시스템을 채점 보조도구로서 충분히 사용할 수 있을 것이다.

확률적 교차 연산을 이용한 보편적 관계 추출 (General Relation Extraction Using Probabilistic Crossover)

  • 이제승;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.371-380
    • /
    • 2023
  • 관계 추출은 텍스트로부터 개체(named entity) 사이의 관계를 추출하는 과정이다. 전통적으로 관계 추출 방법은 주어와 목적어가 미리 정해진 상태에서 관계만 추출한다. 그러나 종단형 관계 추출에서는 개체 쌍마다 주어와 목적어의 위치를 고려하여 가능한 모든 관계를 추출해야 하므로 이 방법은 시간과 자원을 비효율적으로 사용한다. 본 논문에서는 이러한 문제를 완화하기 위해 문장에서 주어와 목적어의 위치에 따른 방향을 설정하고, 정해진 방향에 따라 관계를 추출하는 방법을 제안한다. 제안하는 방법은 기존의 관계 추출 데이터를 활용하여 문장에서 주어가 목적어를 가리키는 방향을 나타내는 방향 표지를 새롭게 생성하고, 개체 위치 토큰과 개체 유형 정보를 문장에 추가하는 작업을 통해 사전학습 언어모델 (KLUE-RoBERTa-base, RoBERTa-base)을 이용하여 방향을 예측한다. 그리고 확률적 교차 연산을 통해 주어와 목적어 개체의 표상을 생성한다. 이후 이러한 개체의 표상을 활용하여 관계를 추출한다. 실험 결과를 통해, 제안 모델이 하나로 통합된 라벨을 예측하는 것보다 3 ~ 4%p 정도 더 우수한 성능을 보여주었다. 또한, 제안 모델을 이용해 한국어 데이터와 영어 데이터를 학습할 때, 데이터 수와 언어적 차이로 인해 한국어보다 영어에서 1.7%p 정도 더 높은 성능을 보여주었고, 최상의 성능을 내는 매개변수의 값이 다르게 나타나는 부분도 관찰할 수 있었다. 제안 모델은 방향에 따른 경우의 수를 제외함으로써 종단형 관계 추출에서 자원의 낭비를 줄일 수 있다.

가변길이부호화이론과 이분검색법을 적용한 새로운 한글자모 모르스 부호 (A New Hangul Jamo Morse Code According to The Variable Length Coding Theory and Dichotomic Search Method)

  • 홍완표
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.803-812
    • /
    • 2018
  • 1844년 5월에 미국에서 유선전신업무에 모르스 부호를 사용하기 시작하였다. 우리나라는 그 후 약40여년이 지난, 1884년에 모르스 부호를 개발하여, 1885년 9월에 처음으로 유선전신업무에 사용하였다. 이때 제정된 국문자모 호마타법 모르스 부호는 현재까지 큰 개정 사항 없이 현재까지 약 130년 이상 사용되어 오고 있다. 모르스 부호는 자모들의 부호 길이가 상이한 가변길이 부호체계이다. 로마자 알파벳의 경우에는 알파벳의 발생빈도를 고려한 가변길이 부호화이론을 적용한 것으로 기록되어 있다. 그러나 한글 자모 모르스 부호를 분석해 본 결과 가변길이 부호화이론을 적용하지 않은 것으로 나타났다. 본 논문에서는 한글 자모 모르스 부호를 가변길이 부호이론을 적용하여 분석하였다. 이 분석결과에 의하면 한글 자 모모르스 부호를 가변길이 부호이론에 의하여 부호화할 경우, 현재의 부호에 비하여 약 33%의 전송효율을 높일 수 있는 것으로 나타났다. 본 논문은 이 분석결과를 토대로 새로운 한글 자모 모르스 부호를 제시하였다.

4차 산업혁명 시대의 에듀테크 (Edutech in the Era of the 4th Industrial Revolution)

  • 박지수;길준민
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권11호
    • /
    • pp.329-331
    • /
    • 2020
  • 에듀테크는 교육(Education)과 기술(Technology)의 합성된 단어로서, 4차 산업혁명 시대의 교육 패러다임이다. 이는 4차 산업혁명의 빅데이터(Bigdata), 인공지능(AI), 로봇, 가상현실(Virtual reality; VR) 등 정보통신기술(ICT)을 활용한 차세대 교육을 의미한다. ICT에서의 교육은 온라인 강의로 이러닝(e-Learning)이 사용되고 있으나, 코로나-19로 인해 비대면 교육에 대한 수유가 급증함에 따라 이러닝과 함께 에듀테크가 주목받고 있다. 따라서 본 논문에서는 블록체인 기반의 배지서비스 플랫폼, 시뮬레이션 기반 협동형 이러닝 시스템, 동영상 영어사전, 그리고 블록체인 기반의 접근제어 감사시스템에 대한 심사 완료된 논문들을 분석한다.

한글 토크나이징 라이브러리 모듈 분석 (Analysis of the Korean Tokenizing Library Module)

  • 이재경;서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.78-80
    • /
    • 2021
  • 현재 자연어 처리(NLP)에 대한 연구는 급속히 발전하고 있다. 자연어 처리는 인간이 일상생활에서 사용하는 언어의 의미를 분석하여 컴퓨터가 처리할 수 있도록 하는 기술로 음성인식, 맞춤법 검사, 텍스트 분류 등 여러 분야에 사용하고 있다. 현재 가장 많이 사용되는 자연어처리 라이브러리는 영어를 기준으로 한 NLTK로 한글처리에 단점을 가지고 있다. 따라서 본 논문에서는 한글 토크나이징(Tokenizing) 라이브러리인 KonLPy와 Soynlp를 소개 후 형태소 분석 및 처리 기법을 분석하고, KonLPy의 단점을 보완한 Soynlp와의 모듈을 비교·분석하여 향후 의료분야에 적합한 자연어 처리 모델로 활용하고자 한다.

  • PDF

접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정 (Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning)

  • 석미란;김유섭
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.555-562
    • /
    • 2016
  • 의미 역 결정은 한 문장에서 술어와 그것의 논항간의 의미 관계를 결정해주는 것을 말한다. 한편 한국어 의미 역 결정은 영어와는 다른 한국어 고유의 특이한 언어 구조 때문에 많은 어려움을 가지고 있는데, 이러한 어려움 때문에 지금까지 제안된 다양한 방법들을 곧바로 적용하기에 어려움이 있었다. 다시 말하자면, 지금까지 제안된 방법들은 영어나 중국어에 적용했을 때에 비해서 한국어에 적용하면 낮은 성능을 보여주었던 것이다. 이러한 어려움을 해결하기 위하여 본 연구에서는 조사나 어미와 같은 접사구조를 분석하는 것에 초점을 맞추었다. 한국어는 일본어와 같은 교착어의 하나인데, 이들 교착어에서는 매우 잘 정리되어 있는 접사구조가 어휘에 반영되어 있다. 교착어는 바로 이들 잘 정의된 접사 구조 때문에 매우 자유로운 어순이 가능하다. 또한 본 연구에서는 단일 형태소로 이루어진 논항은 기초 통계량을 기준으로 의미 역 결정을 하였다. 또한 지지 벡터 기계(Support Vector Machine: SVM)과 조건부 무작위장(Conditional Random Fields: CRFs)와 갗은 기계 학습 알고리즘을 사용하여 앞에서 결정되지 못한 논항들의 의미 역을 결정하였다. 본 논문에서 제시된 방법은 기계 학습 접근 방식이 처리해야 하는 논항의 범위를 줄여주는 역할을 하는데, 이는 기계 학습 접근은 상대적으로 불확실하고 부정확한 의미 역 결정을 하기 때문이다. 실험에서는 본 연구는 15,224 논항을 사용하였는데, 약 83.24%의 f1 점수를 얻을 수 있었는데, 이는 한국어 의미 역 결정 연구에 있어서 해외에서 발표된 연구 중 가장 높은 성능으로 알려진 것에 비해 약 4.85%의 향상을 보여준 것이다.