• Title/Summary/Keyword: Engineering characteristics

Search Result 51,983, Processing Time 0.083 seconds

An Outlier Detection Using Autoencoder for Ocean Observation Data (해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구)

  • Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.265-274
    • /
    • 2021
  • Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

A Study on the Establishment of Preservation Area for the Preservation of Historical and Cultural Space in the Ancient Village - Focused on the Hongcun, China - (고촌락 역사문화공간 보존을 위한 보호구역 설정 방안 연구 - 중국 굉촌을 중심으로 -)

  • Shin, Hyun-Sil;Dai, Gai-Rong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.65-73
    • /
    • 2022
  • This paper analyzed the characteristics of ancient villages in Hongcun and the method of resetting the preservation area for the preservation of the changed historical and cultural space in Hongcun through the process of change. To this end, the current status of preservation areas and utilization areas in the village was identified through ancient documents, old paintings, policy materials, and interviews related to the village, and through this, the problem of resetting the preservation area was examined. As a result, the following conclusions were drawn. First, Hongcun is a village built under the influence of Confucianism, Buddhism, and Taoism, and the spatial organization was created according to the hierarchy of Confucianism. As a result, it was possible to inherit and preserve the heritage of ancestors even though the central government did not preserve it. Second, the concept of preservation in a limited sense has been applied as Hongcun has been recognized as a cultural heritage that has been passed down since ancient times, but the Great Leap Forward and the Cultural Revolution brought about changes in the village space. Since then, ancient buildings, water systems, and forests have been preserved through regulations on new construction and expansion of a building with the Hongchon preservation plan, but the development within the preservation area is underway due to changes in the lives of original inhabitants, which were followed by continued development pressure and reform and opening. Third, the original inhabitant of ancient villages had a high perception of the value of the heritage, but they demanded the preparation of measures to improve living conditions and create profits, and the active use of villages for this. Fourth, the forest consisting of old trees is being restored, but the gardens in the old house are showing a phenomenon that the garden space is reduced or transformed for use. The bridges and parking lots were newly built in the southern area, which was extended from the western area, the original entrance to the ancient village, resulting in changes in the existing entrance. This was found to be the primary cause of the spatial change of the ancient village, as the road system was modified to make it convenient for tourists to enter and exit. Fifth, the existing preservation area should be reset and preserved by resetting the preservation route centered on Wolso(half Moon Pool), while the surrounding area should be set as a direct and indirect experience space, and according to the hierarchy of each space, the utilization should proceed while the preservation is carried out by crossing the preservation and the utilization.

The Types of Warm Temperate Forest and the Degraded Levels in the Island Area of the West and South Coast (서남해안 도서지역의 난온대 식생유형화 및 훼손등급)

  • Park, Seok-Gon;Sung, Chan-Yong;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.579-593
    • /
    • 2021
  • In order to understand the types of vegetation in warm temperate-climate zones, vegetation was investigated in several island areas in Jeollanam-do (Jindo, Wando, Gangjin, Goheung, and Yeosu). The evaluation standard for degraded level of warm temperate forests were proposed based on the importance percentage (IP) in canopy layer of the evergreen broad-leaf forests and the number of arboreal evergreen broad-leaf species. Through these measurements, the restoration types and techniques for each degraded level were estimated, and it is intended to be used in establishing restoration plans for the southwest coast island area. The vegetation was analyzed using the two-way indicator species analysis (TWINSPAN) method using survey data of 307 plots. As a result, it was divided into 8 communities, and the appearance characteristics of evergreen broad-leaf species were identified in each community. Community I was located on the lower slope at an altitude of 86.6 m, and Neolitsea sericea and Castanopsis sieboldii were dominant. Communities II and III were the vegetation types that appear on the coast below an altitude of 10.5 to 22.5 m, and Machilus thunbergii, Cinnamomum japonicum, N. sericea, and C. sieboldii were dominant. Communities IV and V were vegetation types that appeared in the lower and middle slops between the altitudes of 71.9 to 153.4m, and C. sieboldii was dominant. In community VI, the N. sericea was dominant in the lower and middle slops at an altitude of 166.9 m. The last communities VII and VIII were the vegetation types that appeared on the middle slop at an altitude of 187.8 to 246.2 m. Also, Quercus acuta and Q. salicina were present. In summary, the evergreen broad-leaf forests dominated by M. thunbergii, C. japonicum, and N. sericea appeared mainly in the coastal areas of the lowlands. The community of C. sieboldii was distributed higher inland than this community. The communities that appeared mainly in the inland highlands at levels above these two communities were Q. acuta and Q. salicina. The degraded level was classified as 0 to V, according to the IP of arboreal evergreen broad-leaf species and the number of arboreal evergreen broad-leaf species. According to the degraded level, the restoration types (preservation, induction, improvement, creation) and the restoration techniques were determined.

Analysis of the Relationship between the Flow Characteristics of the Tsushima Warm Current and Pacific Decadal Oscillation (대마난류의 유동 특성과 PDO의 관계 분석)

  • Seo, Ho-San;Chung, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.882-889
    • /
    • 2022
  • In this study, to understand the factors influencing the flow change the Tsushima Warm Current (TWC), the correlation between the volume transport the TWC, El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) was analyzed. A calculation of the monthly volume transport of TWC for 25 years (1993-2018) revealed that the seasonal fluctuation cycle was the largest in summer and smallest in winter. Power spectrum analysis to determine the periodicity of the TWC volume transport, Oceanic Niño Undex (ONI), and PDO indicated that the TWC volume transport peaked at a one year cycle, but ONI and PDO showed no clear cycle. Further, to understand the correlation between the TWC transport volume and ONI and PDO, the coherence estimation method was used for analysis. The coherence of ONI and PDO had a high mutual contribution in long-period fluctuations of three years or more but had low mutual contribution in short-period fluctuations within one year. However, the coherence value between the two factors of the TWC volume transport and PDO was 0.7 in the 0.8-1.2 year cycle, which had a high mutual contribution. Meanwhile, the TWC volume transport and PDO have an inverse correlation between period I (1993-2002) and period III (2010-2018). When the TWC maximum transport volume (2.2 Sv or more) was high, the PDO index showed a negative value below -1.0, and the PDO index showed a positive value when the TWC maximum transport volume was (below 2.2 Sv). Therefore, using long-term PDO index data, changes in the TWC transport volume and water temperature in the East Sea coastal area could be predicted.

Analysis of Economic and Environmental Effects of Remanufactured Furniture Through Case Studies (사례분석을 통한 사용 후 가구 재제조의 경제적·환경적 효과 분석)

  • Lee, Jong-Hyo;Kang, Hong-Yoon;Hwang, Yong Woo;Hwang, Hyeon-Jeong
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.67-76
    • /
    • 2022
  • The furniture industry has a high possibility to create value-added and a high potential to create new occupations due to the characteristics of the industry, which mainly consists of small and medium-sized enterprises (SMEs). However, the used furniture, which has sufficient reuse value, is also crushed and used as solid refuse fuel (SRF) recently. Besides, the number of waste treatment companies continues to decrease, and it occurs congestion of wood waste. As a way to solve the issue, a business model development of remanufacturing used furniture can be suggested as an alternative due to its high circular economic efficiency. Remanufacturing business including furniture industry creates positive effects in various aspects such as economic, environmental and job creation. In other words, remanufacturing is an effective recycling way to reduce input resources and energy in the production process. The results of economic analysis show that the expected annual revenue from the single worker furniture remanufacturing site was 104 million won which is 3.11 times more than the average income of a single-worker household in Korea and its B/C ratio was estimated about 30 which means high business feasibility. Revenue through furniture remanufacturing also showed 320 times higher than that of SRF production from the perspective of weight. In addition, it is shown that the GHGs reduction from the furniture remanufacturing is 2.2 ton CO2-eq. per year, which is similar to the amount of GHGs absorption effect of 937 pine trees or 622 Korean oak trees annually. Thus the results of this study demonstrate that it is important to adopt an appropriate recycling method considering the economic and environmental effects at the end-of-life stage.

Occurrence of Viral Diseases in the Early Growth Stage of Soybean in Korea (우리나라 콩 생육초기 바이러스병 발생 양상)

  • Sangmin Bak;Mina Kwon;Dong Hyun Kang;Hong-Kyu Lee;Young-Nam Yoon;In-Yeol Baek;Young Gyu Lee;Jae Sun Moon;Su-Heon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.253-264
    • /
    • 2022
  • In this study, we investigated the occurrence of viral diseases in the early growth stage of soybean to establish management practices. We collected 83 soybean samples showing abnormal symptoms, approximately 3-4 weeks after seeding in the breeding field of the National Institute of Crop Science. Viruses were detected in the collected samples using reverse transcription polymerase chain reaction (RT-PCR) and metatranscriptome analysis of all those samples. The incidence of viral diseases in the field was less than 1% overall and up to 50% in certain cultivars and lines. RT-PCR and metatranscriptome analysis detected Soybean yellow mottle mosaic virus (SYMMV), Soybean mosaic virus (SMV), Soybean yellow common mosaic virus, Peanut stunt virus, and soybean geminivirus A (SGVA). Among these detected viruses, SYMMV and SMV were identified as major viruses causing infection in the early growth stage of soybean, with detection rates of 53.7% and 42.6%, respectively. Soybeans infected with SYMMV showed typical mosaic symptoms, whereas those infected with SMV showed a variety of symptoms such as mosaic, mottle, stunt, and chlorotic spots. Transmission characteristics of these viruses are variable, such that SMV is primarily transmitted by seeds, whereas SYMMV could be transmitted by insects, soil, and seeds. In this study, SGVA was detected in the early growth stage of soybean, and research on the current status and its effects on soybean after the early growth stage should be conducted.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.