• Title/Summary/Keyword: Engineering Information Management

Search Result 10,198, Processing Time 0.055 seconds

A Study of Improvement of Urban Pavement Maintenance Technique based on Pavement Condition Evaluation and FWD Data (도로포장 표면조사와 FWD정보에 기반한 도심지 도로포장 유지보수 기법 개선방안 연구)

  • Lee, Sangyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.532-541
    • /
    • 2016
  • The objective of this paper is to support accurate pavement condition assessment and decision of proper maintenance method and time by conducting visual inspection and calculating the remaining life of pavement from falling weight deflectometer(FWD) data. Each was implemented in the same long-term performance pavement(LTPP) sections. Visual inspection was executed to measure pavement condition indices such as crack, rutting and international roughness index(IRI) and the Seoul Pavement Index(SPI) was calculated based on these results. The dynamic modulus was back-calculated from the FWD data. The remaining pavement lives were determined from equivalent single axle loading(ESAL) and FWD data. Correlation of maintenance priority by each result value was examined. Consequently, the correlation between remaining life to Crack and Rutting was higher than the other factors or indicesbecause IRI is not related to FWD value and SPI value consists with IRI value and other indices. The R-square value of correlation of FWD with Crack and Rutting was 0.65, which indicated an insufficient correlation. Consequently, when decision of maintenance of method, time, etc. is determined, FWD data have to be considered with Crack and Rutting because of those relations.

A Cost-Efficient Job Scheduling Algorithm in Cloud Resource Broker with Scalable VM Allocation Scheme (클라우드 자원 브로커에서 확장성 있는 가상 머신 할당 기법을 이용한 비용 적응형 작업 스케쥴링 알고리즘)

  • Ren, Ye;Kim, Seong-Hwan;Kang, Dong-Ki;Kim, Byung-Sang;Youn, Chan-Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.137-148
    • /
    • 2012
  • Cloud service users request dedicated virtual computing resource from the cloud service provider to process jobs in independent environment from other users. To optimize this process with automated method, in this paper we proposed a framework for workflow scheduling in the cloud environment, in which the core component is the middleware called broker mediating the interaction between users and cloud service providers. To process jobs in on-demand and virtualized resources from cloud service providers, many papers propose scheduling algorithms that allocate jobs to virtual machines which are dedicated to one machine one job. With this method, the isolation of being processed jobs is guaranteed, but we can't use each resource to its fullest computing capacity with high efficiency in resource utilization. This paper therefore proposed a cost-efficient job scheduling algorithm which maximizes the utilization of managed resources with increasing the degree of multiprogramming to reduce the number of needed virtual machines; consequently we can save the cost for processing requests. We also consider the performance degradation in proposed scheme with thrashing and context switching. By evaluating the experimental results, we have shown that the proposed scheme has better cost-performance feature compared to an existing scheme.

A System with Efficient Managing and Monitoring for Guidance Device (보행안내 기기의 효과적인 관리 및 모니터링을 위한 시스템)

  • Lee, Jin-Hee;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.187-194
    • /
    • 2016
  • When performing experiments in indoor and outdoor environment, we need a system that monitors a volunteer to prevent dangerous situations and efficiently manages the data in real time. We developed a guidance device for visually impaired person that guides the user to walk safely to the destination in the previous study. We set a POI (Point of Interest) of a specific location indoors and outdoors and tracks the user's position and navigate the walking path using artificial markers and ZigBee modules as landmark. In addition, we develop path finding algorithm to be used for navigation in the guidance device. In the test bed, the volunteers are exposed to dangerous situations and can be an accident due to malfunction of the device since they are visually impaired person or normal person wearing a eye patch. Therefore the device requires a system that remotely monitors the volunteer wearing guidance device and manages indoor or outdoor a lot of map data. In this paper, we introduce a managing system that monitors the volunteers remotely and handles map data efficiently. We implement a management system which can monitor the volunteer in order to prevent a hazardous situation and effectively manage large amounts of data. In addition, we verified the effectiveness of the proposed system through various experiments.

An Empirical Correlation Study Between Sasang Constitutions and Job Characteristic (사상체질과 작업특성간의 실증적 상관관계 연구)

  • Yoon, Sang-won;Kal, Won-mo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2000
  • We detect lots of problems on the manufacturing spot because of working results done without considering the aptitude and inherited temper(constitution, blood type, male and female) of the worker, and they lead to results not only the occupational disease and the cause of industrial accidents but also quality deterioration and productivity reduction in point of view of manufacturing management. For the purpose of solving these problems, this study is perfomed by grasping the correlation sasang constitutions and job characteristic of small & medium enterprises. We classify sasang constitutions to four types : so-yang-in type, tae-yang-in type, tae-em-in type, so-em-in type by the utilization of QSCC II and the doctor aid of oriental medicine, and also survey differences of classified sasang constitutions with previous studies. This study tries to identify significant features between major jobs resulting from sasang constitution types in a specific small & medium enterprise producing agricultural machinery(a tractor, a combine, etc). The results of this case study indicate that sasang constitution types influences job types. Under the working conditions that virtual reality scene photographed by video camera are running, also the effects of brain function of each worker using Electroencephalograms(EEGs) are investigated. Electroencephalograms(EEGs) provide much information about the brain function, such as relaxation, concentration, various thoughts and so on. Previous studies reported the appearance of ${\theta}$ waves and an increase in the ${\alpha}$ waves during psychologically satisfaction conditions. An statistical analysis of experiments conducted shows the various changes of brain waves(${\alpha},{\beta},{\theta},{\delta}$ waves). By means of these study results, we can identify that sasang constitutions should be applied to contribute much to quality advancement and productivity improvement through a comparative study on the job characteristic.

  • PDF

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

Technology Development of Entry-Level MiC Smart Photovoltaic System based on SOC (SoC 기반 보급형 MiC 스마트 태양광발전시스템 기술개발)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.129-134
    • /
    • 2020
  • Moisture infiltration inside the solar cell module, filling of EVA sheet, melting of the frame seal, and deterioration of power generation performance in the module one year after installation are occurring. Whitening phenomenon, electrode corrosion phenomenon, and dielectric breakdown phenomenon are appearing in solar cell module installed in Korea before 5-7 years, leading to deterioration of power generation performance, and big problems for long-term reliability and long life technology are emerging. Therefore, in order to solve these problems, the development of a micro inverter (MiCrco Inverter Converter, MiC) including the function of securing the durability of the solar cell module and monitoring the aging progress and the solar cell based on the monitoring data from the MiC smart monitoring programs have been proposed to determine the aging of modules. In addition, in order to become a highly efficient solar smart monitoring system through systematic operation management through IT convergence with MiC that has enhanced monitoring function of solar cell module, SoC(System On Chip) in micro inverter is the environment for solar cell module. There is a demand for functions that can detect information in a complex manner and perform communication and control when necessary. Based on these requirements, this paper aims to develop SoC-based low-cost MiC smart photovoltaic system technology.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

Application of Indicator Geostatistics for Probabilistic Uncertainty and Risk Analyses of Geochemical Data (지화학 자료의 확률론적 불확실성 및 위험성 분석을 위한 지시자 지구통계학의 응용)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.301-312
    • /
    • 2010
  • Geochemical data have been regarded as one of the important environmental variables in the environmental management. Since they are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction for further analysis. The main objective of this paper is to exemplify how indicator geostatistics can be effectively applied to geochemical data processing for providing decision-supporting information as well as spatial distribution of the geochemical data. A whole geostatistical analysis framework, which includes probabilistic uncertainty modeling, classification and risk analysis, was illustrated through a case study of cadmium mapping. A conditional cumulative distribution function (ccdf) was first modeled by indicator kriging, and then e-type estimates and conditional variance were computed for spatial distribution of cadmium and quantitative uncertainty measures, respectively. Two different classification criteria such as a probability thresholding and an attribute thresholding were applied to delineate contaminated and safe areas. Finally, additional sampling locations were extracted from the coefficient of variation that accounts for both the conditional variance and the difference between attribute values and thresholding values. It is suggested that the indicator geostatistical framework illustrated in this study be a useful tool for analyzing any environmental variables including geochemical data for decision-making in the presence of uncertainty.

A Study on the Development of Topic Map for Analysis of Customer Satisfaction in Tourism Industry (관광산업의 고객만족도 분석을 위한 토픽맵 개발에 관한 연구)

  • Kang, Min Shik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.249-255
    • /
    • 2017
  • The domestic tourism industry mostly relies on quantitative surveys for customer satisfaction. However, customer participation of the questionnaires is extremely low and the improvement of the dissatisfactory factors is not being performed promptly. In this paper, we propose a new topic map system and prove its empirical effectiveness to improve the accuracy of customer feedback information and the efficiency of the analysis process. The topic map system is a system for analyzing large amounts of customer feedback data in real time. It uses text mining and ontology techniques by integrating data collected over a certain period from real-time SNS and quantitative data obtained from existing survey systems. The effect after improving the analyzed factors of dissatisfaction is also a new and innovative evaluation system for monitoring customer satisfaction in real time. The classification based on this integrated data is a classification system that is specific to the product or the customer. According to this classification, it is possible to measure the effect of the recognition and improvement of the complaint factor in real time on the topic map system. This provides a sophisticated prioritization of the improvement factors and enables customer satisfaction quality control as a PDCA feedback system. In addition, the survey period and costs are greatly shortened, and responses can be more precise to the existing survey method. As a practical application, this system is applied to the largest H travel agency in Korea to prove the accuracy and efficiency of the proposed system.

Suggestion for Integrated Process Quality Control for Facility Management of Smart City at Construction Stage (Smart City 시공단계 시설물 통합품질관리 프로세스 제안)

  • Park, In-Woo;Kim, In-Han;Choi, Jung-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.535-544
    • /
    • 2016
  • Korean government is promoting "K-Smart City" to overseas market which is an integrated solution of construction industry with ICT(Information and Communciations Technologies) industry. Due to nature of Smart City, construction quality and the development quality of the facilities need to be established to improve the overall quality. However, guidelines and regulations to initiate quality control for Smart City are behind the actual demand. This deficiency is bringing quality control for construction and ICT to be controlled separately causing lack of synergy and resulting in overall quality degradation. This research is designed to improve the construction quality of Smart City during its establishment stage by integrating ICT system with on-site construction (Integrated control center and on-site equipment). The adoption of this research to a real Smart City case had resulted in 22% reduction of construction inspection failure (Audit), and also allowed Construction Company to pre-align quality control of all purchased items of ICT Infra that resulted in 18% reduction of nonconformity, thus contributing to an overall quality improvement. This research is expected to be used widely among all construction industry of Smart City.