• Title/Summary/Keyword: Engineering Design Process

Search Result 10,398, Processing Time 0.044 seconds

A Study on the Integration of Systems Engineering Process and Systems Safety Process in the Conceptual Design Stage to Improve Systems Safety (시스템 개념설계 단계에서 안전도 향상을 위한 시스템공학 및 시스템안전 프로세스의 통합에 관한 연구)

  • Kim, Young-Min;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • Recently, we have witnessed the definitely negative impacts of large-scale accidents happened in such areas as atomic power plants and high-speed train systems, which result in increased fear for the potential danger. The problems appear to arise due to the deficiency in the design of large-scale complex systems. One of the causes can be attributed to the design process that does not fully reflect the safety requirements in the early stage of the system development because of the substantially increased complexity. In this paper, to enhance the systems safety an integrated process is studied, which considers simultaneously both the system design process and system safety process from the beginning of the system development. In the conceptual system design phase an integrated process model is constructed by analyzing the activities of both the system design and safety processes. As a case study example, an inner city train system is described with the application of the developed process. The computer simulation of the example case is followed by the result discussed. The results obtained in the paper are expected to be the basis for the future study where a detailed process and its associated activities can be developed.

Optimization of Sheet Metal Forming Process Based on Two-Attribute Robust Design Methodology (2속성 강건 설계를 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Fractures and wrinkles are two major defects frequently found in the sheet metal forming process. The process has several noise factors that cannot be ignored when determining the optimal process conditions. Therefore, without any countermeasures against noise, attempts to reduce defects through optimal design methods have often led to failure. In this study, a new and robust design methodology that can reduce the possibility of formation of fractures and wrinkles is presented using decision-making theory. A two-attribute value function is presented to form the design metric for the sheet metal forming process. A modified complex method is adopted to isolate the optimal robust design variables. One of the major limitations of the traditional robust design methodology, which is based on an orthogonal array experiment, is that the values of the optimal design variables have to coincide with one of the experimental levels. As this restriction is eliminated in the complex method, a better solution can be expected. The procedure of the proposed method is illustrated through a robust design of the sheet metal forming process of a side member of an automobile body.

Development of Airworthiness Database System with Validation Process for Design Programs of General Aviation Aircraft

  • Lwin, Tun;Lee, Jae Woo;Kim, Sangho;Lee, Hyojin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.435-445
    • /
    • 2012
  • In this paper, a design process is established by integrating aviation safety requirements for the development of general aviation aircraft. An Airworthiness-Design Integration System, which integrates certification requirements with the entire design/analysis process, is developed and presented. For the proposed system, KAS 23/FAR 23/AC 23/CS 23 certification regulations are analyzed to determine design constraints and system compliance checks and to construct an ER&G (Engineering Requirement and Guide) and a Design-Certification Related Table (DCRT). Furthermore, through building a DB (Data Base), the management of design and certification related resources for developing a FAR 23 class aircraft are made. Certification tools and resources are also efficiently managed by the DB. The connection between the certification requirements and the detailed design process is proposed in this system. Tracking of this proposed method is validated by configuring a USE CASE and a system. The Airworthiness-Design Integration system will be constructed based on the system's design plan, certification system, and usage scenarios.

How to Utilize Critical Thinking in Engineering Education (공학 교육에서의 비판적 사고의 활용 방안)

  • Park, Sang Tae
    • Journal of Engineering Education Research
    • /
    • v.23 no.6
    • /
    • pp.27-32
    • /
    • 2020
  • The aim of this paper is to explore various ways to utilize critical thinking in engineering education. To this end, this paper, in the light of the relationship between critical thinking and the program learning performance of ABEEK, reviews engineering design education, engineering ethics education, and engineering communication education, which are major areas where critical thinking can be utilized in engineering education. As a result, it was confirmed that critical thinking skills, especially the elements and criteria of critical thinking, can contribute to the creative problem-solving process in engineering design education, the rational decision-making process in engineering ethics education, and the effective communication process in engineering communication education.

Maximizing Use of Common Parts in Complex System Design through Organizing 3D Design Process (3D 설계 프로세스 정립을 통한 복잡한 시스템 설계에서의 공용부품 사용 극대화)

  • Choi, Y.W.;Park, K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.209-219
    • /
    • 2007
  • Designing a complex system such as an LCD developing system becomes inefficient when many designers are involved and create their own parts even though they can be used repeatedly in other sections. Thus, this paper proposes a new design process that can maximize the number of common parts in complex system design by organizing the 3D design process. The proposed design process consists of 5 stages: analysis of design intention, definition of initial product structure, definition of skeleton model, sharing design intention with all assembles, control of correlation between components. The proposed design process can maximize common parts in design process, which results in shorter lead time, less production cost, and greater economic benefits.

The 2-DOF Control system design for Quadruple-Tank process using Root Locus Technique.

  • Arjin, Numsomran;Thanit, Trisuwannawat;Kitti, Tirasesth
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1371-1374
    • /
    • 2004
  • The control system design of 2-DOF for SISO process by root locus technique is not complicated and efficiently. It can design the control system to have the transient and steady state responses, and do not adjust the gain of process controller later. However, due to control system design for MIMO process, by root locus technique, there is not exact method. This paper is presents the control system design method for Quadruple-Tank Process, by using root locus technique for the structure of 2-DOF control system. The design procedures are first decentralized then using the relative gain array, and finally 2-DOF controller design is applied.

  • PDF

A Hybrid Monitor (Rib, Boss) Design System with a Function Based Design and a Knowledge Based Design (기능기반설계와 지식기반 형상설계를 이용한 하이브리드 모니터 마스크(리브, 보스) 설계시스템)

  • Lee S.H.;Chun H.J.;Jeon S.M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.77-87
    • /
    • 2006
  • It is necessary to change the existing design process to cope with a short life-cycle product and various customer's demands. Also a frequent design change may delay the whole design process and it will increase the unit cost of the production. New alternatives or techniques have emerged to solve the existing design problems, such as a knowledge based engineering, an intelligent CAD, a function based design, and so on. In this paper, we propose a hybrid design system with a knowledge based design methodology and a function based design technique. The knowledge based design is good at a frequent design change and the function based design is effective to extract a core design behavior. In an early design process, the system utilizes a core design behavior through the function based design process. On the other hand, the system manages complicated design issues with the knowledge based design technique in the detailed design process. We conclude that the hybrid design system can bring fair effects on implementing an efficient design environment in aspect of time and expense.

A Design for Six Sigma: A Robust Tool in Systems Engineering Process

  • Yoon, Hee-Kweon;Byun, Jai-Hyun
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.346-352
    • /
    • 2012
  • While systems engineering has been widely applied to complex system development, some evidences are reported about major budget and schedule overruns in systems engineering applied. On the other hand, many organizations have been deploying Design for Six Sigma (DFSS) to build Six Sigma momentums in the area of design and development for their products and processes. To explore the possibility of having a DFSS complement systems engineering process, this process reviews the systems engineering with their categories of effort and DFSS with its methodologies. A comparison of the systems engineering process and DFSS indicates that DFSS can be a complement to systems engineering for delivering higher quality products to customers faster at a lower cost. We suggest a simplified framework of systems engineering process, that is, PADOV which was derived from the generic systems engineering process which has been applied to the development of T-50 advanced supersonic trainer aircraft by Korea Aerospace Industries (KAI) with technical assistance of Lockheed Martin. We demonstrated that each phase of PADOV framework is comprehensively matched to the pertinent categories of systems engineering effort from various standards.

INTERACTIVE SYSTEM DESIGN USING THE COMPLEMENTARITY OF AXIOMATIC DESIGN AND FAULT TREE ANALYSIS

  • Heo, Gyun-Young;Lee, Tae-Sik;Do, Sung-Hee
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.51-62
    • /
    • 2007
  • To efficiently design safety-critical systems such as nuclear power plants, with the requirement of high reliability, methodologies allowing for rigorous interactions between the synthesis and analysis processes have been proposed. This paper attempts to develop a reliability-centered design framework through an interactive process between Axiomatic Design (AD) and Fault Tree Analysis (FTA). Integrating AD and FTA into a single framework appears to be a viable solution, as they compliment each other with their unique advantages. AD provides a systematic synthesis tool while FTA is commonly used as a safety analysis tool. These methodologies build a design process that is less subjective, and they enable designers to develop insights that lead to solutions with improved reliability. Due to the nature of the two methodologies, the information involved in each process is complementary: a success tree versus a fault tree. Thus, at each step a system using AD is synthesized, and its reliability is then quantified using the FT derived from the AD synthesis process. The converted FT provides an opportunity to examine the completeness of the outcome from the synthesis process. This study presents an example of the design of a Containment Heat Removal System (CHRS). A case study illustrates the process of designing the CHRS with an interactive design framework focusing on the conversion of the AD process to FTA.

Application of Design Process Modeling for Mold Design (설계 과정 모델링 기법을 적용한 금형 설계)

  • 장진우;임성락;김석렬;이상헌;우윤환;이강수;허영무;양진석;배규형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.954-957
    • /
    • 2002
  • The objective of design process modeling is a systematic support of rapid redesign process fur a modified input data. The design process modeling is realized by storing key parameters or geometric entities used in the intermediate design steps and reusing them for change of the designed parts or assemblies according to the modified input. In this paper, we adopted and implemented the design process modeling approach to our injection mold design system developed based on the Unigraphics system. It was proved that the productivity of mold redesign process is raised highly by introducing the design process modeling technique mold design system.

  • PDF