Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.96-98
/
2016
Recently, big data technology develop due to the rapid data generation. Thus big data analysis tools for analyzing big data has been developed. Typical big data tools are the R program, Hive, Tajo and more. But data analysis based on Matlab is still common used. And it is still used in big data analysis. In this paper, it research into big data analysis system based on the Matlab for analyzing vital signals.
Cha, Jae-Min;Shin, Junguk;Son, Choong-Yeon;Hwang, Dong-Sik;Yeom, Choong Sub
Journal of the Korean Society of Systems Engineering
/
v.11
no.2
/
pp.13-29
/
2015
With the era of big data, the big data has been expected to have a large impact in the NPP safety areas. Although high interests of the big data for the NPP safety, only a limited researches concerning this issue are revealed. Especially, researches on the logical/physical structure and systematic design methods for the big data platform for the NPP safety were not dealt with. In this research, we design a new big data pilot platform for the NPP safety especially focusing on health monitoring and early warning services. For this, we propose a tailored design process based on SE approaches to manage inherent high complexities of the platform design. The proposed design process is consist of several steps from elicitate stakeholders to integration test via define operational concept and scenarios, and system requirements, design a conceptual functional architecture, select alternative physical modules for the derived functions and assess the applicability of the alternative modules, design a conceptual physical architecture, implement and integrate the physical modules. From the design process, this paper covers until the conceptual physical architecture design. In the following paper, the rest of the design process and results of the field test will be shown.
Journal of information and communication convergence engineering
/
v.16
no.2
/
pp.99-105
/
2018
k-Nearest neighbor join (k-NN Join) is a computationally intensive algorithm that is designed to find k-nearest neighbors from a dataset S for every object in another dataset R. Most related studies on k-NN Join are based on single-computer operations. As the data dimensions and data volume increase, running the k-NN Join algorithm on a single computer cannot generate results quickly. To solve this scalability problem, we introduce the locality-sensitive hashing (LSH) k-NN Join algorithm implemented in Spark, an approach for high-dimensional big data. LSH is used to map similar data onto the same bucket, which can reduce the data search scope. In order to achieve parallel implementation of the algorithm on multiple computers, the Spark framework is used to accelerate the computation of distances between objects in a cluster. Results show that our proposed approach is fast and accurate for high-dimensional and big data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.12
/
pp.2305-2311
/
2017
In recent years, there have been tries to open public data from various government agencies along with publicization of public information for the public interest. In other words, various kinds of electronic data generated and collected by the public institutions as a result of their work are opened in the public portal sites. However, users who use it are limited in their use of big data due to lack of understanding of data format, lack of data processing knowledge, difficulty in accessing and managing data, and lack of visualization data to understand collected and stored data. Therefore, in this study, we propose a big data collection, storing and visualization platform that can collect big data provided by various public sites using data set URL and API regardless of data format, re-process collected data using XML structure.
International Journal of Computer Science & Network Security
/
v.22
no.2
/
pp.290-296
/
2022
Big Data is a data analysis technology empowered by late advances in innovations and engineering. In any case, big data involves a colossal responsibility of equipment and handling assets, making reception expenses of big data innovation restrictive to little and medium estimated organizations. Cloud computing offers the guarantee of big data execution to little and medium measured organizations. Big Data preparing is performed through a programming worldview known as MapReduce. Normally, execution of the MapReduce worldview requires organized joined stockpiling and equal preparing. The computing needs of MapReduce writing computer programs are frequently past what little and medium measured business can submit. Cloud computing is on-request network admittance to computing assets, given by an external element. Normal arrangement models for cloud computing incorporate platform as a service (PaaS), software as a service (SaaS), framework as a service (IaaS), and equipment as a service (HaaS).
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.5
/
pp.1073-1079
/
2014
One of the techniques that are most in the spotlight today, it can be said that Big data. With Big Data, technologies already prevalent in our lives is GPS. Based on the GPS data and Big Data, in this paper, we try to analyze the pattern and path of movement of a particular target. Specific target collects the GPS data by classifying weather and grade and sex of college students, and day of the week in college students of one university. The collected data is analyzed such as movement path, movement time, pattern of repetitive behavior. And visualize it. The analysis method will be classified according to the purpose of data. By identifying relationships with other data results obtained. Based on the present study, the future, we will derive the results of the data more reliable. For this purpose, a wide range of information to be collected will additionally. Research will be developed add to such as Season, time, blood type, occupation data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.11
/
pp.2027-2032
/
2016
The rapid diffusion of smart phones and the development of data storage and analysis technology have made the field of big-data a promising industry in the future. In the marketing field, big-data analysis on social data can be used for understanding the needs of consumers as an effective and efficient marketing tool. Before the age of big-data, companies had relied upon the traditional methods such as questionnaire survey and marketing test in which a small number of consumers had participated. The traditional methods have still been used. Although both of big-data analysis and traditional methods are useful to understand consumers. It is need to check whether the results from both include similar implications. In this point, this study attempts to compare the results of big-data analysis with that of questionnaire survey on some cosmetics brands methods. As the results of this study, both results of big-data analysis and questionnaire survey include similar implications.
In the information society represented by the Fourth Industrial Revolution, various types of data and information that are difficult to see are produced, processed, and processed and circulated to enhance the value of existing goods. The IoT(Internet of Things) paradigm will change the appearance of individual life, industry, disaster, safety and public service fields. In order to implement the IoT paradigm, several elements of technology are required. It is necessary that these various elements are efficiently connected to constitute one system as a whole. It is also necessary to collect, provide, transmit, store and analyze IoT data for implementation of IoT platform. We designed and implemented a big data processing IoT platform for IoT service implementation. Proposed platform system is consist of IoT sensing/control device, IoT message protocol, unstructured data server and big data analysis components. For platform testing, fixed IoT devices were implemented as solar power generation modules and mobile IoT devices as modules for table tennis stroke data measurement. The transmission part uses the HTTP and the CoAP, which are based on the Internet. The data server is composed of Hadoop and the big data is analyzed using R. Through the emprical test using fixed and mobile IoT devices we confirmed that proposed IoT platform system normally process and operate big data.
IEMEK Journal of Embedded Systems and Applications
/
v.16
no.6
/
pp.259-266
/
2021
Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.114-116
/
2016
Today, the analysis of big data hae been used as an essential tool for finding customers' needs. Various big-data analysis sites have provided the analysis results with their own forms and styles according to their service and characteristics. Therefore, to use the analysis results for marketing fields, we have to understand the major characteristics on big data analysis tools. In this point, this study attempts to compare the characteristics of big data analysis results and styles from big data analysis sites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.