• Title/Summary/Keyword: Engine room

검색결과 359건 처리시간 0.019초

Development of the Marine Engine Room Simulator

  • Jung, Byung-Gun;So, Myung-Ok;Eum, Pil-Yong;Paek, Se-Hwon;Kim, Chang-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권7호
    • /
    • pp.872-880
    • /
    • 2007
  • The development of a Marine Engine Room Simulator system for training and research is described. Development objectives of the system are for both student training, research and development work. The system includes a distributed server/client architecture for 1 to 1, or 1 to many client simulation operation through OPC server, complete separation of visual elements from the controlling routines and the ability to work on the mathematical model independent of the controller and visual systems. A graphical user interface for the man-machine interface has been developed and the mathematical model has been updated. Various engine room operational situations can be simulated. The use of marine engine room simulator for training of sea going engineers and its competency for STCW-95 is discussed.

버스 엔진 룸 내 캐버터에서의 3차원 유동해석 (Numerical Analysis of the Three Dimensional Flow in a Cavity of the Bus Engine Room)

  • 윤준용;맹주성;강승규;황용서
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.82-90
    • /
    • 1999
  • Numerical analysis of the three dimensional flow in a bus engine room is carried out through this study. The radiator and the fan modeling rare carried out to simulate the flow in an engine room, and the results are focused on the flow in the cavity located in front of the radiator. The numerical simulation results are compared with the experiment . To improve the cooling performance in the bus engine room, the flow inside the cavity is inspected in detail. The complex flow features are found in this region , and the suggestion are made to improve the radiators cooling performance.

  • PDF

열원이 있는 밀폐된 선박 기관실에서의 난류기류에 관한 수치적 연구 (Numerical simulation of turbulent air-flow in a closed engine room with heat source in a ship)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.100-107
    • /
    • 1998
  • Ventilation of the marine engine room is very important for the health of the workers as well as the nomal operation of machines. To find proper ventilation conditions of this engine room, numerical simulation with standard k-.epsilon. model was carried out. In the present study, the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with downword angle depresses recirculation flow, causing a strong steam in the wider space of the room. Ventilation and removal of the released heat are promoted with this pattern. There is a possibility of local extreme heating at the upper surface of engine when supply and exhaust ports of air are in bilateral symmetry. The effect of the increase of exhaust port area on ventilation decreases as the number of supply port increases.

  • PDF

ISO 9001을 이용한 기관실 자원관리시스템(ERMS)의 구축에 관한 연구 (A Study on the Establishment of Engine Room Resource Management System using the Requirements of ISO 9001)

  • 장원준;김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.327-333
    • /
    • 2012
  • 이 논문의 목적은 2010 개정 STCW(선원의 훈련, 자격증명 및 당직근무의 기준에 관한 협약) 협약의 요건에 따라 강제적으로 시행 예정인 기관실 자원관리시스템(Engine Room Resource Management System)를 ISO 9001의 8대 품질경영원칙과 국내법과 연계하여 구축하는 실제적 절차를 연구하는 데에 있다. 이를 위하여 본 논문에서는 기관실 자원관리의 정의와 필요성과 ISO 9001요건에 따른 고객, 제품, 고객 요구사항의 파악 등에 대한 검토와 고찰을 수행하였다.

다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석 (Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines)

  • 최요한;유일훈;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

차 개구형상이 엔진룸내 유동에 미치는 영향에 관한 수치연구 (The Numerical Study of the Effect of Car Front Opening Area on the mean Flow in Engine Room)

  • 류명석;이은준;구영곤
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.158-165
    • /
    • 1996
  • The knowledge of air flow in an engine room has become more and more important in recent car design. The fluid flow in the engine compartment was investigated by numerical analysis. Due to the complex geometry of the engine compartment, mesh generation is a time-consuming job. In this research, the "ICEM" code was used to generate meshes by the Cartesian mesh model. The Reynolds-averaged Navier Stokes equations, together with the porous flow model for radiator and condenser, were solved. Computation was performed for the steady, incompressible, and high speed viscous flow, adopting the standard K-ε turbulence model. The "STAR-CD" code was used as a solver. The effect of car front openning area on the flow in engine room was also investigated.

  • PDF

궤도차량용 보조동력장치 엔진룸 내부 열유동 특성에 관한 연구 (A Study on Thermal and Fluid Characteristics inside Engine Room of Auxiliary Power Unit for Tracked Vehicle)

  • 이태의;서정세;정상환;박영식
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.85-93
    • /
    • 2009
  • This research is intended to grasp the characteristics of heat flow inside auxiliary power device engine room to obtain the design basic data through numerical analysis and experiment. For experiment cost reduction, numerical analysis was done to obtain quantitative data by observing the change in temperature distribution of major parts according to changes in normal condition, incompressible condition, engine surface heat emission rate and absorption temperature with the use of commercial STAR-CD. The experiment was done by grasping the temperature distribution of major interested parts inside engine room in loaded and unloaded conditions during engine operation. The temperature distribution data here will serve as useful design data during APU engine room designing.

기존의 엔진룸을 이용한 신규 개발 디젤 엔진의 지지계 결정에 관한 연구 (A Study on the Decision of the Mount for the Newly Developed Diesel Engine using the Existing Engine Room)

  • 김규철;김주연;안상호
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.75-85
    • /
    • 1998
  • This paper presents the procedures and technique of the decision on the decision on the mount in a diesel engine development newly. To assess the vibration chara- cteristics of the engine plus transmission, their inertia moments are calculated for three engine versions. i.e., NA(Naturally Aspirated), TC(Turbocharged) and TCI(Turbocharged and Intercooled). These data are used to determine the mount layout and stiffness values affecting the noise quality of an engine as well as a vehicle. The main purpose of this paper is to design the mount rubber having the optimal stiffness characteristics through the investigation of the calculation results and the mount conditions when an engine is installed in a vehicle using the existing engine mount room. Thus, this paper describes the optimal mount positions, rubber stiffnesses, natural frequency, mode shapes and so on using ADAMS program to apply the newly developed engines to three different vehicles.

  • PDF

컨테이너 선박의 엔진부하와 엔진 연소공기 급기방식에 따른 기관실 차압 특성에 관한 연구 (A Study on the Characteristics of Differential Pressure According to Main Engine Load and a Process of Supply Air For Combustion)

  • 구근회;성치언;황유진;이재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.822-826
    • /
    • 2009
  • In case of engine room of ship, it uses type 2 ventilation system which supplies outside air forcibly by engine room ventilation fan, and naturally discharges air to outlet through low-pressed casing. The advantage of type 2 ventilation is that it makes inside with bi-pressure status to discharge contaminated materials to outside naturally. However, there is a phenomenon that pressure is greatly different between outside and inside due to huge amount of air supply by engine room ventilation fan. Therefore, we went aboard a container vessel which is on test run to analyze differential pressure with micronanometer by engine load and by combustion air supply method of engine. As a result, as engine load decreases (50, 75, 100%), the differential pressure between outside and inside tends to increase by 35% average, and the difference of pressure was 6.5 times maximum by combustion air supply method of engine.

유공성 수평격판을 가진 열원이 있는 밀폐공간내의 온도분포 특성 (Characteristices of Temperature Distribution in a Closed Space with Heat Source and Porous Horizontal Partition)

  • 박찬수;조대환;전철균
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.29-37
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room, numerical simulation with standard k-${\epsilon}$ model was carried out. In the present study, the marine engine room is separated to two floors with porus horizontal partition and considered as a closed space with a heat source and forced ventilation ducts. The porosity of horizontal partition is found to be important. For the engine room with 2 supply ports & 2 exhaust ports, the increasing of the porosity of horizontal partition is effective to reduce the recirculation flow zone in the second floor. When the engine room is ventilated with three supply air ports & one exhaust port, the increasing of the porosity of horizontal partition is effective to reduce the recirculating flow zone in the exhaust air area, but there is a possibility of local extreme heating at the lower side of engine near bottom.

  • PDF