• Title/Summary/Keyword: Engine performance simulation

Search Result 639, Processing Time 0.023 seconds

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

Performance Simulation of a Gasoline Engine Using Multi-Length-Scale Production Rate Model (다중 길이척도 난류운동에너지 생성율 모형을 이용한 가솔린 기관의 성능 시뮬레이션)

  • 이홍국;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.1-14
    • /
    • 1999
  • In the present study, the flame factor which primarily influence the simulation accuracy of the combustion process in a gasoline engine was modeled as a nonlinear function of turbulent intensity to laminar flame speed ratio. Multi-length-scale production rate model for turbulent kinetic energy equation was introduced to consider the different length scales of the swirling and tumbling motions in cylinder on the production rte of turbulent kinetic energy. By7 introducing the multi-length-scale production rate model for the turbulent kinetic energy equation, the predictions of turbulent burning velocity , cylinder pressure, mass burning rate and engine performance of a gasoline engine can much be improved.

  • PDF

Predicting Technique of the Performance for a Five-Valve Gasoline Engine by Gas Exchange Simulation (가스 교환 시뮬레이션에 의한 5 밸브 가솔린 엔진의 성능 예측 기술)

  • 성백규;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • A simulation model has been developed to predict the performance of 5-valve gasoline engine by gas exchange process with combustion model. In this study, we simulated the intake flow characteristics and performance of 5-valve engine with entwine speed and we compared the 5-valve engine performance with that of 4-valve engine. As a result. the calculated value was in consistency with the measured value relatively. The performance of 5-valve engine was higher than that of 4-valve engine in high engine speed region.

A Study on Performance Simulation of Propulsion System for KT-1 (KT-1 기본 훈련기의 추진기관 비행성능 해석연구)

  • 오성환;장현수;기덕종
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.225-229
    • /
    • 2003
  • The exact performance simulation of propulsion system is a key element in the prediction of the aircraft performance. The specification performance analysis using the installed loss of KT-1 showed a large difference with the engine performance measured during the flight tests. This indicates that a method to estimate the more exact performance is needed. The study on the performance simulation with performance map correction along the engine operating line shows the good consistent results through all the flight conditions and engine conditions. The correction factors of the map were resulted from the comparative analysis between the flight test and the simulation of installed engine performance.

  • PDF

A Case Study on the Verification of the Initial Layout of Engine Block Machining Line Using Simulation (엔진블럭 가공라인 초기설계안 검증을 위한 시뮬레이션 사례연구)

  • 문덕희;성재헌;조현일
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.41-53
    • /
    • 2003
  • The major components of an engine are engine block (or cylinder block), cylinder head, crank shaft, connecting rod and cam shaft. Thus the engine shop usually consists of six sub-lines, five machining lines and one assembly line. Flow line is the typical concept of layout for machining these parts, especially for engine block. In order to design an engine block machining line, several factors should be considered such as yearly production target, working hours, machines, tools, material handling equipments and so on. If the designers of manufacturing line were unaware of some factors those would be influenced on the system performance, it would make greater problems in the phase of mass production. Therefore the initial design of engine block machining line should be verified carefully. Simulation is the most powerful tool for analyzing the initial layout. This paper introduces the major factors those should be considered for designing the machining line and their effects on the system performance. 3D simulation models are developed with QUEST. Using the simulation model developed the initial layout is analyzed, and we suggest some ideas for improvement.

  • PDF

A Study on the Effect of Exhaust Manifold Configuration on Engine Performance in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린기관에서 배기계의 형상이 기관성능에 미치는 영향에 관한 연구)

  • 정수진;김태훈;조진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.751-767
    • /
    • 1994
  • Recent developments of S.I. engine, aiming to higher power, better fuel economy, lower air pollution and better driveability, have much focused on the importance of the role of computer simulation in engine research and development. In this point of view, improving engine performance requires finding some means to improve volumetric efficiency. Up to now there have been several attempts to optimize the intake and exhaust system of internal system of S.I. engine by computer simulation. There appear to be few studies available, however, of such simulation & experimental studies applied to the optimization of exhaust manifold configuration. In this study, gas exchange & power process of 4 cylinder S.I. Engine was studies numerically & experimentally, and governing equation of a one-dimensional unsteady compressible flow and combustion process were respectively solved by a characteristics method and 2-zone model. The aim of this study is to predict and investigate the influence of pressure wave interaction at the exhaust systems on engine performance with widely differing exhaust manifold configuration.

A Study on Performance of LNG Engine by Using 2-Zone Combustion Model (2영역 연소모델을 이용한 액화천연가스 기관의 성능에 관한 연구)

  • 한영출;오용석;조재명
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • To reduce the particulate matter and nitrogen oxides from diesel engine, many studies are proceeding and being accomplished practically. In this situation, LNG engine has important meaning as a clean fuel and alternative energy. In this reason, we try to understand the property of LNG fuel and predict the performance with using LNG engine simulation program and practical test. It could help to lead and apply practically LNG engine was studied in performance and other parameter related with engine performance and compared with current diesel engine. The simulation program was proved to be good in describing the experimental result. This means current heavy duty vehicle could be modified to LNG engine.

  • PDF

A Performance Simulation for Spark Ignition Wankel Rotary Engine (불꽃점화 반켈 로터리 기관의 성능 시뮬레이션)

  • 채재우;이상만;전영남;김규정;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF

Test and Simulation of An Engine for Long Endurance Miniature UAVs (장기체공 소형 UAV용 엔진 성능시험 및 시뮬레이션)

  • Shin, Young-Gy;Chang, Sung-Ho;Koo, Sam-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.99-105
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.