• Title/Summary/Keyword: Engine development

Search Result 2,544, Processing Time 0.046 seconds

Visualization of Initial Flame Development in an SI Engine (스파크 점화 엔진에서 초기화염 발달의 가시화)

  • Ohm Inyong
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

Study on the Emergency Protection System of Liquid Rocket Engine (액체로켓엔진 비상보호시스템 연구)

  • Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.97-103
    • /
    • 2011
  • This paper describes the main considerations for the development of engine emergency protection system and applications to preliminary engine development tests. Emergency protection system performed its role without failure to shutdown test very quickly for the prevention of development of malfunctioning of test articles, which protected test articles and test facility in all abnormal situation occurred during preliminary engine development test program. This results will be used for the development of engine emergency protection system.

  • PDF

Development of Engine Simulator for The Optimal Control System Implementation of Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Lim, H.S.;Cha, Y.B.;Lee, B.S.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2082-2085
    • /
    • 2002
  • This paper describes the development of a gas turbine engine simulator in detail. The simulator presented in this paper has a mathematical engine model based on a target gas turbine engine performance data and is developed for generating a gas turbine engine sensor signals between the hardwares and softwares of a gas turbine engine control system using Data Acquisition systems(DAS) and 1553B communication, a aeronautic standard communication specification. In addition, this paper proves the excellent performance of this simulator by showing the results of a gas turbine engine field test and simulation.

  • PDF

The Development of Software for Vehicle Engine Mounting System Analysis (차량 엔진마운팅 시스템 해석 소프트웨어 개발)

  • Park, Un-Hwan;Song, Yoon-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.348-354
    • /
    • 2010
  • In the beginning of vehicle development, it is difficult to define the concept of engine mounting system. With only the property of vehicle, we have to find the direction of engine mounting system. And it is important to find common mounts for several engine variation in order to reduce the cost and manage mounts efficiently. This paper introduces the software which has developed for engine mounting system analysis. And its function and usefulness are explained in paper. The examples have correlated between the analysis model and real model to raise the accuracy during development of engine mounting system are shown in paper.

A Study of Low Temperature Combustion System Optimization for Heavy Duty Diesel Engine (대형디젤엔진의 저온연소 시스템 최적화에 관한 연구)

  • Han, Youngdeok;Shim, Euijoon;Shin, Seunghyup;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-184
    • /
    • 2015
  • According to the regulation on the environment and fuel efficiency is becoming strict, many experiments are conducted to improve efficiency and emission in internal combustion engines. LTC (Low temperature combustion) technology is a promised solution for low emissions but there are a few barriers for the commercial engine. This paper includes optimization that applies LTC method to heavy duty diesel engine. Adequate LTC was applied to low and middle load as adaptability in heavy duty diesel engine, and optimization focused on reduction of fuel consumption was proceeded at high load. Through this research, strategy for practical use of LTC was selected, and fuel consumption has improved on the condition that satisfies the emission regulation at systematic viewpoint.

Development of MATLAB/Simulink Modular Simulation Toolbox for Space Shuttle Main Engine (MATLAB/Simulink 모듈화 기반 우주왕복선 주엔진 시뮬레이션 툴박스 개발)

  • Cho, Woosung;Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.50-60
    • /
    • 2019
  • This paper introduces the development of a toolbox for the Space Shuttle Main Engine(SSME) based on MATLAB/Simulink. A mathematical model of rocket engine creation and validation can be a complex process, the development of a rocket engine toolbox simplifies this process, thereby facilitating engine performance optimization as well as new design development. The mathematical modeling of the SSME dealt with in this paper is formed by 32 first-order differential equations derived from seven governing equations. We develop the toolbox for the SSME classifying each module according to the engine components. Further, we confirm the validity of the toolbox by comparing the results of the simulation obtained using the toolbox with those obtained using the original simulation of the engine.

Establishing HP/LP-EGR System and Founding Operating Strategy of Low Temperature Combustion Engine to Improve Fuel Consumption (연료소비율 개선을 위한 고압/저압 배기재순환 시스템 구축 및 저온연소 엔진의 운전전략 수립)

  • Shin, Seunghyup;Han, Youngdeok;Shim, Euijoon;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.81-89
    • /
    • 2014
  • This study researched on the effect of HP/LP-EGR system to improve fuel consumption of Low Temperature Combustion Engine. Firstly, low temperature combustion engine with HP/LP-EGR system was established using 6.0L wastegate turbocharger HDDI engine. And suppliable EGR rate of the engine was proven to be enough to realize stable low temperature combustion. Then, optimum operating strategy was founded to develop fuel consumption of the engine. Control parameters were HP/LP-EGR valve and IPCV(Intake Pressure Control Valve) duty. Experiments method was that characteristics of the engine were measured and analyzed according to HP/LP-EGR strategies while EGR rate was fixed. Operating range for the strategy were divided into three parts, low load for low temperature combustion, high load for conventional diesel combustion, and transient condition. Finally, with the above strategy of this study, BSFC of the engine was improved about 2% compared to the base engine, and emission level, NOx and PM, met Tier4Final emission regulation.

Optimal Mounting System for Active Engine Mount (능동 최적 마운팅 시스템 개발)

  • Kim, Jeong-Hoon;Kim, Jae-San;Kim, Jang-Ho;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.276-277
    • /
    • 2008
  • Recently active engine mounting system is developed for improvement of vehicle NVH performance which follow the development of high efficient powertrain and lightweight vehicle body. The most important part in the development of active engine mounting system is implementation of optimal engine mounting system to apply active engine mount. In this paper engine mounting systems including active engine mount are considered and their performance is predicted using engine mounting system analysis tool. Then optimal mounting system for active engine mount is proposed.

  • PDF

Development of an Engine Simulator for Optimal Control System Implementation of a Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Cha, Young-Bum;Koo, Bon-Min;Song, Do-Ho;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • In advanced countries, a gas turbine engine is developed to use in aircraft, vessels, and target weapons. Our nation also passed the level of producing engine components and now, we are developing small-sized gas turbine engine. The most important point of the gas turbine engine, the engine control technique, is evaded by the advanced nations. This document contains the research about the development of the gas turbine engine simulator. The simulator presented in this document has a mathematical engine model based on a capacity data of the gas turbine engine to advance the engine simulator. Through this process, it eases the development of the gas turbine engine control algorithm and helps to check the engine controller function. In this simulator, the engine sensor signal conversion board is designed, so the engine model shows like a real sensor signal during the simulation. Also, this paper contrasts the actual engine test with the simulation results to verify the performance.

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.