• Title/Summary/Keyword: Engine assembly

Search Result 150, Processing Time 0.027 seconds

Friction Characteristics of Piston Assembly (II) -Experiment- (피스톤계 마찰 특성 (II) -실험적 연구-)

  • Cho, Myung-Rae;Ha, Kyoung-Pyo;Kim, Joong-Soo;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.88-93
    • /
    • 2003
  • The aim of this paper is to investigate the friction characteristics of piston assembly, which composed of ring pack and piston skirt. The friction force of piston assembly was measured by using the movable liner in the single cylinder engine, and the various parameters were tested. The friction force was suddenly increased at the expansion stroke due to higher cylinder pressure. The viscous friction was dominant at the mid stroke, but the boundary friction was dominant at the top and bottom dead centers. Through the experiment, we could validate previous theoretical study, and confirm that th e radial clearance and ring tension were very effective to reduce friction loss of piston assembly.

The Optimization Design of Engine Cradle using Hydroforming (하이드로포밍을 이용한 엔진크래들 최적설계)

  • Oh, Jin-Ho;Lee, Gyu-Min;Choi, Han-Ho;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.571-575
    • /
    • 2008
  • An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.

  • PDF

Analysis and Prediction of Structural Vibration for Diesel Engine Generator Set (디젤 발전기세트의 구조진동특성 연구)

  • 이수목;김관영;김원현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.948-954
    • /
    • 2002
  • The structural vibration of a diesel generator set was investigated through analyses and tests. FE modeling and normal mode analysis were performed and compared with measured results for both structure components and generator set assembly. The results of component analyses were fairly well coincident with measured results but those of assembled generator set showed more or less discrepancies. Discussions were given about the uncertainties for vibration characteristics of component structures and assembled running structures especially concerning their nonlinearities and damping effects. Detailed excitation analysis fellowed by forced response analysis was done from the engine and pressure data to compare with the actual measured vibration. As results the vibration prediction for frame structures of reciprocating internal combustion engine was confirmed reliable to some extent.

  • PDF

Critical Speed Analysis of a 7 Ton Class Liquid Rocket Engine Oxidizer Pump (7톤급 액체로켓엔진 산화제펌프 임계속도 해석)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Choi, Chang-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • A critical speed analysis of oxidizer pump was peformed for a 7 ton class liquid rocket engine as the third stage engine of the Korea Space Launch Vehicle II. Based on the previously developed experimental 30 ton class turbopump and presently developing 75 ton class turbopump for the first and second stage rocket engine of Korea Space Launch Vehicle II, a layout and configuration of the 7 ton class turbopump rotor assembly are determined. A ball bearing stiffness analysis and rotordynamic analysis are performed for both of the bearing unloaded condition and loaded condition. Structural flexibility of the oxidizer pump casing is also included to predict critical speeds. From the numerical analysis, it is confirmed that the rotor system acquires sufficient separate margin of critical speed as a sub-critical rotor even though decrease of critical speed due to the casing structural flexibility.

A Cost-competitive Optical Receiver Engine Based on Embedded Optics Technology for 400G PAM4 Optical Transceivers in Data Center Applications

  • Lee, Eun-Gu;Lee, Jyung Chan;Kang, Chang Hyun;Jeon, Kyeongwan;Choi, Jun-Seok;Lee, Hyun Soo;Park, Jong Woon;Moon, Jong Ha
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • We propose a novel, tiny optical receiver engine utilizing an all-in-one package based on embedded optics technology. The package's best transmission S21 and reflection S22 opto-electric (OE) bandwidths are 49.8 GHz and 34.9 GHz, respectively, and the reflectance of the optical engine is below -31.7 dB for all channels. The engine satisfies the MIL-STD-883G standard for reliability tests, such as mechanical and thermal shock, and vibration resistance. The sensitivity after 10 km single-mode fiber (SMF) transmission is below -8 dBm. The optical receiver engine is cost-competitive and applicable for 400G coarse wavelength division multiplexing 4 (CWDM4) 10 km optical transceivers.

SoMA: A System of Making Avatars based on a Commercial Game Engine (SoMA: 상용 게임엔진 기반의 아바타 생성 시스템)

  • Kim, Byung-Cheol;Roh, Chang Hyun
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.373-380
    • /
    • 2017
  • We propose the SoMA(System of Making Avatars) based on a commercial 3D game engine. It first decomposes a given character into assemblable pieces, then gives the user them as prefab components so that he or she can reassemble and/or customize them to be plenty of characters. To accomplish this, it implements the character assembly structure as an hierarchy, the upper levels of which are categorized for gross assembly, and the lower levels of which are parameterized for detailed customization. It also defines a hierarchical naming convention for ease of access to the structure. Finally, it provides body, clothes, and attachment systems to make relevant characters.

Designing isolation system for Engine/Compressor Assembly of GAS Driven Heat Pump (가스 엔진 구동 열펌프 실외기 엔진/압축기 진동 절연 설계)

  • Lenchine Valeri V.;Ko, Hong-Seok;Joo, Jae-Man;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1133
    • /
    • 2003
  • A gas driven heat pump (GHP) core design comprises internal combustion engine, compressors incorporated to a cooling/heating system, rubber mountings and belt transmissions. Main excitation farces are generated by an engine, compressors themselves and belt fluctuation. It leads to high vibration level of the mount that can cause damage of GHP elements. Therefore an appropriate design of the mounting system is crucial in terms of reliability and vibration reduction. In this paper oscillation of the engine mount is explored both experimentally and analytically. Experimental analysis of natural frequencies and operational frequency response of the GHP engine mounting system enables to create simplified model for numerical and analytical investigations. It is worked out criteria f3r vibration abatement of the isolated structure. Influence of bracket stiffness between engine and compressors, suspension locations and damper performance is investigated. Ways to reduce excitation forces and improve dynamic performance of the engine-compressor mounting system are considered from these analyses. Implementation of the proposed approach permits to choose appropriate rubber mountings and their location as well as joining elements design A phase matching technique can be employed to control forces from main exciters. It enables to changing vibration response of the structure by control of natural modes contribution. Proposed changes lead to significant vibration reduction and can be easily utilized in engineering practice.

  • PDF

A Case Study on the Verification of the Initial Layout of Engine Block Machining Line Using Simulation (엔진블럭 가공라인 초기설계안 검증을 위한 시뮬레이션 사례연구)

  • 문덕희;성재헌;조현일
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.41-53
    • /
    • 2003
  • The major components of an engine are engine block (or cylinder block), cylinder head, crank shaft, connecting rod and cam shaft. Thus the engine shop usually consists of six sub-lines, five machining lines and one assembly line. Flow line is the typical concept of layout for machining these parts, especially for engine block. In order to design an engine block machining line, several factors should be considered such as yearly production target, working hours, machines, tools, material handling equipments and so on. If the designers of manufacturing line were unaware of some factors those would be influenced on the system performance, it would make greater problems in the phase of mass production. Therefore the initial design of engine block machining line should be verified carefully. Simulation is the most powerful tool for analyzing the initial layout. This paper introduces the major factors those should be considered for designing the machining line and their effects on the system performance. 3D simulation models are developed with QUEST. Using the simulation model developed the initial layout is analyzed, and we suggest some ideas for improvement.

  • PDF

Performance Analysis of the Block Production Line in an Engine Production Plant (엔진 블록 가공라인의 물류분석)

  • 김상훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.105-109
    • /
    • 1999
  • Tool shop of the D Heavy Industries Co.(DHI) fabricates engines for a bus, truck, small ship. In order to increase the production capacity of engines, DHI will be established the new tool shop that consists of a block line, head line, assembly line, test line and AS/RS in 1999. In order to assure the production capacity designed of the new tool shop for producing engines and improve the production process of it, it is needed to find a bottleneck process and an optimal way of allocating workloads among machines and workers to maximize the production. In a way to solve this, we model the engine fabrication process of the tool shop and analyze its performance by computer simulation. In this study, we at first identify the bottleneck processes of the engine fabrication process under the designed operation policy. Then, we derive some alternative operating policies applicable to the new tool shop of an engine, and analyze the optimal operation policy by comparing the performance of the tool shop following each alternative policy.

  • PDF

Development of Static Seal for a Liquid Rocket Engine (액체 로켓 엔진 스태틱 실 개발)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Chung, Taegeum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • Static seals are used to seal high temperature gas and cryogenic fluid under high pressure, at interfaces between liquid rocket engine components such as combustion chamber, turbopump, gas generator, valves, etc. As thermal expansion and contraction at assembly interfaces cause undesirable leakage under cryogenic and high temperature environments, static seals applied for sealing of joint interfaces without relative motion should be designed properly. The additional function of rotation at the sealing face is also required for static seals, when the spherical flange is used for improvement of assembly at misalignment interfaces. In this study, structural analysis and leak tightness test of simulating test rig for several important interfaces are performed, to verify structural integrity of static seals.