• Title/Summary/Keyword: Engine Shafting System

Search Result 66, Processing Time 0.032 seconds

Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine (고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가)

  • Kim, InSeob;Yoon, Hyunwoo;Kim, Junseong;Vuong, QuangDao;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

Experimental Equipment for Torsional Vibration of Marine Propulsion Shafting (선박용 추진축계 비틀림진동 실험장치의 소개)

  • Kim, S.H.;Kim, J.G.;Lee, D.C.;Park, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.149-153
    • /
    • 2005
  • Marine Propulsion shafting system coupled with medium diesel engine forms multi-degree torsional vibration system which consist of many inertia masses such as crank, flywheel, propeller and sometimes gear system is adopted additionally for the purpose of improving propeller's propulsion efficiency or connecting with PTO/PTI. The periodic excitation torques generated by combustion pressure in cylinder and reciprocating masses induce various kinds of vibrations in this shafting system. If the frequency of this excitation torques is equal to the natural frequency of the shafting, the amplitude of the torsional vibration increases steeply and the damage of crankshaft or gears may be occurred by that. This frequency is called critical speed. When making a plan for shafting system, it is important for this frequency to be expected exactly and not to be in commonly used speed. For this reason, this paper introduces the experimental equipment for torsional vibration of marine propulsion shafting system and describes the theoretic and the experimental methods to look for natural frequencies.

  • PDF

A Study on the Coupled Torsional-Axial Vibration of Marine Propulsion Shafting System using the Energy Method

  • Jang, Min-Oh;Kim, Ue-Kan;Park, Yong-Nam;Lee, Young-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.482-492
    • /
    • 2004
  • Recently. the market trend for marine diesel engine has involved the lower running speeds. larger stroke/bore ratio and higher combustion pressure. Consequently, because of the flexible engine shafting system due to the larger mass. inertia and the more elasticity, the complicated coupled torsional-axial vibrations have occurred in the operating speed range. Also, the vibrations act as an excitation on the hull-structural vibration. To predict the vibration behavior with more accuracy and reliability. many studies have proposed the several kinds of method to calculate the stiffness matrix of crankshaft. However, most of these methods have a weak point to spend much time on three dimensional modeling and meshing work for crankshaft. Therefore. in this work. the stiffness matrix for the crankthrow is calculated using the energy method (Influence Coefficient Method, ICM) with the each mass having 6 degree of freedom. Its effectiveness is verified through the comparison with the stiffness matrix obtained by using the finite element method (FEM) and measured results for actual ships propulsion system.

A Study on Optimum Shaft Alignment Analysis for VLCC (VLCC의 최적 축계정렬해석 연구)

  • Kim Hyu Chang;Kim Jun Gi
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.134-137
    • /
    • 2005
  • Recently, in VLCC, shafting system is stiffer due to large engine power whereas hull structure is more flexible due to scantling optimization, which can be suffered from alignment damage by incompatibility between shafting and hull, In this study, shafting system without stern tube forward bush was adapted for less sensitive system against external factors. Also, shaft alignment analysis was considered with hull deflection at various ship loading conditions and stern tube after bush of long journal bearing was evaluated by static squeezing pressure and dynamic oil film pressure with sloping control. Whirling vibration was also reviewed to avoid resonance with propeller blade order. So, reliable shafting design for VLCC could be achieved through optimized alignment analysis for the system without stern tube forward bush.

  • PDF

Study on the Parameter Decision of Spring-viscous Dampers for Torsional Vibration Reduction of Diesel Engine Shafting System (디젤엔진축계 진동저감을 위한 스프링-점성 댐퍼의 매개변수 결정 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.;Shin, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1168-1175
    • /
    • 2010
  • Excessive torsional vibrations from marine engine shafting systems can be reduced by using torsional vibration dampers. But in order to be tuned effectively, the dampers should be designed through the optimum design procedure. In this paper, the procedure to get the optimum values of system parameters of spring-viscous dampers using effective modal mass of inertia and stiffness is suggested and the damping is determined by the exact algebra optimization method. The validity of the suggested method is confirmed through the application to a 1800 kW four cycle diesel engine and generator system.

Alignment Calculation of Marine Engine Shafting System by Quadruple Integration Method (四重積分에 의한 船舶推進軸系의 配置에 關한 硏究)

  • Park, Tae-In;Lee, Hyun-Yup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.32-39
    • /
    • 1979
  • Alignment of marine engine shafting generally implies a judicious slope alignment of supporting bearings in order to achieve acceptable values of bearing reactions and shaft stresses for all deformation conditions of hull. Authors developed a computer program, which computes the bearing reaction forces, the bearing reaction influence numbers and etc, using quadruple integration method. And the results of calculation for a 26,000 DWT steam container carrier were in good agreements with those of foreign shipyard. Also they introduced the optimization technique of slope alignment combined technical economic basis, and as a result of comparing characteristics of shafting in case of straight alignment whit those in case of slope alignment, the latter was found to be much better than the former.

  • PDF

Development of Analysis Program of Dynamic Characteristic for the Propulsion Shafting System (선박추진축계 동특성 분석 프로그램 개발)

  • Ha, Jeong-Min;Lee, Jeong-Myeong;Lee, Jeong-Hoon;Kim, Yong-Whi;Ahn, Byeong-Hyun;Choi, Byeong-Keun;Kim, Won-Chul
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Due to the changes of marine transportation industry, it requires ship in larger scale and high speed. In order to operate efficiently, the engine should be work in high power and high horse power. The increase of the number of the propeller blades and the pitch of the screw and the weight, vibration of shafting problems occurs. To evaluate the safety of the system through analyzing the dynamic characteristics propulsion shafting system, was used to prove or to verify the Lalanne & Ferraris model validation.. It indicates that the Program through Campbell diagram and Critical speed map, Root rocus map, to ensure the reliability of the experimental model.

A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Engines with Tuning Damper

  • Barro Ronald D;Kim Sang-Hwan;Lee Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.776-785
    • /
    • 2006
  • Ship builder's requirement for a higher power output rating has lead to the development of super large two stroke low speed diesel engines. Usually a large-sized bore ranging from 8-14 cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating. Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This all playa vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanism unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.

  • PDF

Excitation Response Estimation of Polar Class Vessel Propulsion Shafting System (대빙 등급 선박 추진 시스템의 기진 응답 평가)

  • Barro, Ronald D.;Lee, Don-Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1166-1176
    • /
    • 2011
  • The prospect in opening the arctic trade transportation route on a year-round basis offers vast opportunity of exploring untapped resources and shortened navigational routes. In addition, the environment's remoteness and lack of technical experiences remains a big challenge for the maritime industry. With this, engine designers and makers are continually investigating, specifically optimizing propulsion shafting system design, to meet the environmental and technical challenges of the region. The International Association of Classification Society, specifically machinery requirements for polar class ships(IACS UR13), embodies the propulsion shafting design requirements for ice class vessels. However, the necessity to upgrade the various features of the unified rules in meeting current polar requirements is acknowledged by IACS and other classification societies. For the polar class propulsion shafting system, it is perceived that the main source of excitation will be the propeller - ice load interaction. The milling - and the impact load, in addition to the load cases interpreted by IACS, contribute greatly to the overall characteristic of the system and due considerations are given during the propulsion design stage. This paper will expound on the excitation load estimation factors affecting the dynamic response of the different propulsion shafting system design. It is anticipated that detailed understanding of these factors will have a significant role during propulsion shafting design in the future.

Coupled Axial and Torsional Vibration Analysis in Large Diesel Engines and Generators for Stationary Power Plants (내연 발전용 대형 디젤 엔진-발전기 축계의 종-비틈 연성진동 해석)

  • Park, Heui-Joo;Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1040-1045
    • /
    • 2000
  • This paper presents results of coupled axial and torsional vibration analysis of shafting system in large diesel engines and generators for stationary power plants. Axial vibration of the shafting system takes place due to mainly torsional deformation or vibration and breathing effect of crank throws, caused by cylinder gas forces and reciprocating inertia of the engine. Cross-coupled stiffness matrix of the crank throws is calculated employing a finite element model of the crank throw and a static condensation method. Forced response analysis of the shafting system is performed using the calculated stiffness matrix and derived governing equations.

  • PDF