• 제목/요약/키워드: Engine Mount Optimization

검색결과 29건 처리시간 0.02초

구동계를 고려한 엔진 마운트의 다분야 통합 최적설계 (Multidisciplinary Design Optimization of Engine Mount with Considering Driveline)

  • 서명원;심문보;김문성;홍석길
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

후륜구동 차량의 소음 진동 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구 (An Experimental Study of Engine Mount Optimization to Improve Noise and Vibration Quality of F.R. Vehicle)

  • 이준용;김찬묵
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.681-688
    • /
    • 1997
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that consider the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Roll Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have achieved good improvements in noise and vibration quality of F.R. vehicle.

  • PDF

최적화 기법에 의한 원통형 유체 엔진마운트의 설계변수 동정 및 최적화 (Optimizing and Identification of Design Parameters of a Cylindrical Hydraulic Engine Mount by an Optimization Method)

  • 안영공
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.66-73
    • /
    • 2017
  • In order to identify the design parameters of a hydraulic engine mount with a nonlinear characteristics, an experimental method has been used generally. The method takes a considerable time and expense because of preparing an experimental apparatus, conducting a test, and analyzing results. Therefore, this paper presents a simple method to identify the design parameters of a cylindrical hydraulic engine mount, and optimize the design parameters. The physical model and mathematical equations of the mount were derived, and values of the design parameters of the mount were identified by optimization method with minimizing difference between the analytical results with the equations and the experimental results. This method is more simpler than the conventional experiment method and identify successfully the design parameters. In addition, the technique can optimize the design parameters of the mount to improves the isolation performance of the mount.

형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화 (Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach)

  • 김중재;김헌영
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF

다중 전달함수합성법을 이용한 승용차 엔진마운트 시스템의 최적설계 (Optimization of an Engine Mount System of passenger Car using the Multi-domain FRF-based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.399-404
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft the FRF-based substructuring method is one of the most powerful tools. In this paper, an optimization procedure far the engine mount system of passenger car has been presented using the design sensitivity analysis based on the multi-domain FRF-based substructuring formulation. The proposed method is applied to an optimization problem of the engine mount system, of which objective is to minimize the interior sound over the concerned rpm range. The design variables selected are the stiffnesses of the engine mounts and bushes. Plugging the gradient information calculated by the proposed method into nonlinear optimization software, we can obtain the optimal stiffnesses of the engine mounts and bushings through design iterations. The optimized interior noise in the passenger car shows that the proposed method is very useful in the realistic situation.

  • PDF

NVH 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구 (Experimental Study of Engine Mount Optimization to Improve NVH Quality)

  • 이준용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.330-337
    • /
    • 1996
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that considered the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Rool Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have a good NVH performance.

  • PDF

건설기계 엔진마운트 최적설계에 관한 실용적 연구 (A Practical Research of Engine Mount Optimization in a Construction Equipment)

  • 신명호;주경훈;김우형;김인동;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

차량 엔진마운트 최적 설계 (Optimal Design of Vehicle Engine Mount)

  • 강구태;원광민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.361-368
    • /
    • 2001
  • This paper introduces optimization techniques to design engine mount properties for passenger vehicle. The design targets are divided into three cases such as optimal positioning of powertrain modes, minimizing vibration of deriver's seat in idling and driving conditions. The proper models, mechanisms of vibration, and characteristics of optimization problems are discussed.

  • PDF

전자식 능동 엔진 마운트 성능 최적화 (Performance Optimization of Electromagnetic Active Engine Mount)

  • 김원규;김연수;이완철;홍성우;김귀한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.514-519
    • /
    • 2011
  • Recently, the interest in technologies for a highly efficient powertrain, i.e. a variable displacement engine or a light weight car body, to improve the fuel efficiency of automobile saving the environment has been increased. However this trend deteriorates NVH performance of a vehicle and the use of a conventional engine mounting system becomes unsatisfactory. In order to solve this dilemma, an active engine mounting system that could isolate or cancel out vibrations occurred at the powertrain was suggested. In this paper, In order to optimize the electromagnetic active engine mount performance, the actuator of the engine mount through FEM analysis and optimal design, noise and elastomer testing of the prototype through the optimal design of actuators for the electromagnetic active engine mount on the impact of the performance improvement is verified.

  • PDF