• Title/Summary/Keyword: Energy-limited environment

Search Result 336, Processing Time 0.032 seconds

A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod (글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구)

  • Chung, Yong-Jin;Hyun, Kyuhwan;Han, Sang Won;Min, Ji Hong;Chun, Seung-Kyu;Koh, Won-Gun;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.

Security Scheme for Prevent malicious Nodes in WiMAX Environment (노드간 에너지 소비를 효율적으로 분산시킨 PRML 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Nam-Kyu;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.774-784
    • /
    • 2009
  • A wireless sensor network consisting of a large number of nodes with limited battery power should minimize energy consumption at each node to prolong the network lifetime. To improve the sensitivity of wireless sensor networks, an efficient scheduling algorithm and energy management technology for minimizing the energy consumption at each node is desired. ill this paper, we propose energy-aware routing mechanism for maximum lifetime and to optimize the solution quality for sensor network maintenance and to relay node from its adjacent cluster heads according to the node"s residual energy and its distance to the base station. Proposed protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of where the sink is located outside or inside the cluster. Simulation results of proposed scheme show that our mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime. To verify propriety using NS-2, proposed scheme constructs sensor networks adapt to current model and evaluate consumption of total energy, energy consumption of cluster head, average energy dissipation over varying network areas with HEED and LEACH-C.

Evaluation of Onshore Wind Resource Potential According to the Road Proximity (도로인접성에 따른 육상 풍력자원 잠재량 평가)

  • Kim, Hyun-Goo;Hwang, Hyo-Jung;Kang, Yong-Heack;Yun, Chang-Yeol
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.13-18
    • /
    • 2013
  • Wind turbines should generally be installed at a certain distance from a road to ensure passengers' safety. In Korea, there is no clear guidance as the Ministry of Environment first proposed a road setback distance of 400 m in the Onshore Wind Farm Siting Guidelines draft proposed in July 2012, and then modified it to 1.5 times the height of the wind turbine in October of the same year. This study analyzed the dynamic range of onshore wind resource potential according to how the road setback distance is set using the Korea Wind Atlas with 100m spatial resolution made by the Korea Institute of Energy Research, the transportation network of the Ministry of Construction and Transportation, and the forest road network of the Korea Forestry Service. Owing to the geographical characteristics of Korea, where mountainous terrain accounts for 70% of the total territory, the wind resource potential within 1 km from forest roads are estimated to be 14.3 GW, 14% of Korea's total wind resource potential. In addition, the construction distance of new road for transporting wind turbines from the existing road to a wind farm site is estimated as less than 2 km. Given the limited wind resource potential and geographical constraints, an assessment system that can maximize wind resource utilization and ensure road safety at the same time, and which takes into account the regional characteristics instead of applying the fixed road setback distance across-the-road, is required.

Media Access Control Mechanism for Efficient Wireless Communication in Underwater Environments (수중 환경에서 효율적인 무선 통신을 위한 매체접근제어 메커니즘)

  • Jeong, Yoo-Jin;Shin, Soo-Young;Park, Soo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • Data transmission in poor environment like underwater has considerably serious delay rate and ewer rate. Like this environment usually has heavy fluctuation of error rate and limited wireless communication state. Therefore, mechanism using in such environment has to be efficient and simple. This paper suggests a new block ack mechanism, called the Pervasive Block ACK (PBA), which transmits aggregated ACKs. This mechanism takes effect on reducing number of traffic, decreasing overhead and delay rate in poor environment networks like underwater. Additionally, we can expect energy consumption. We verify propriety and efficiency of PBA through describing numerical result based analytical formula in this paper.

  • PDF

Seismic behavior of double steel plates and concrete filled composite shear walls subject to in-plane cyclic load: Experimental investigation

  • Xiaohu Li;Hao Luo;Xihao Ren;Tao Zhang;Lei Li;Ke Shi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.345-356
    • /
    • 2024
  • This paper aims to investigate the seismic behavior of double steel plate and concrete composite shear wall (DSCW) of shield buildings in nuclear power engineering through experimental study. Hence, a total of 10 specimens were tested to investigate the hysteretic performance of DSCW specimens in detail, in terms of load vs. displacement hysteretic curves, skeleton curves, failure modes, flexural strength, energy dissipation capacity. The experimental results indicated that the thickness of steel plate, vertical load and stiffener have great influence on the shear bearing capacity of shear wall, and the stud space has limited influence on the shear capacity. And finally, a novel simplified formula was proposed to predict the shear bearing capacity of composite shear wall. The predicted results showed satisfactory agreement with the experimental results.

A Study on Estimation of Air Pollutants Emission from Residential Wood Stove (주거용 화목난로의 대기오염 배출량 추정에 관한 연구)

  • Kim, Pil-Su;Jang, Young-Kee;Kim, Jeong;Shin, Yong-Il;Kim, Jeong-Soo;An, Jun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.276-285
    • /
    • 2010
  • Recently the Korean government has tried to cut down the $PM_{10}$ concentration by the Special Law for Air Quality Improvement. But the concentrations of $PM_{10}$ have exceeded the air quality standard at most monitoring stations. Primary $PM_{10}$ emitted from various sources and emission data have large uncertainty. The biomass burning is one of the major sources of $PM_{10}$ emission. The biomass burning is composed of wood stove usage, meat cooking and agricultural combustion etc.. Activity data and emission factors for the biomass burning are limited, and it is hard to calculate the air pollution emissions from these sources. In this study, we tried to estimate the air pollution emission from residential wood stove usage. The number of total wood stoves is estimated by the survey of wood stove manufacturer. And air pollution emission factors for the wood stove are investigated using the flue gas measurement by U.S. EPA particulate test method (Method 5G). As the results, the $PM_{10}$ and CO emission factors of wood stove are estimated as 7.7 g/kg-wood and 78.8 g/kg-wood respectively. The annual $PM_{10}$ and CO emissions from wood stove are calculated as 1,200~3,600 ton/year and 12,600~36,400 ton/year in Korea. It is confirmed that wood stove is the one of major sources of biomass burning, and the survey for activity data and the measurement for emission factors are needed for reducing the uncertainty of these emission data.

Research on using the exhausted heat from subway tunnel as unused energy (미활용 에너지원으로서의 지하철 배열이용에 관한 연구)

  • 김종렬;금종수;최광환;윤정인;박준택;김동규;김보철;정용현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.695-701
    • /
    • 1998
  • Researches on unused energy are being continued because of the limited fossil fuel and the destruction of environment. Therefore this study was peformed as follows. The collectable amount of exhausted heat for an air-conditioning was calculated by the subway thermal environment prediction program. And the electric power needed by conventional heat source equipments was compared with one by unused heat source equipments when the exhausted heat was used by heat pump in heating and hot water supplying. The results are summarized as follows; 1) Forced ventilation should be conducted to keep optimal temperature in subway tunnel in summer as well as in winter. According to the simulation, temperature in tunnel was higher than that on the ground in summer when the forced ventilation was conducted only in winter. 2) Ventilating time should be calculated out to the optimal condition for not only saving power of ventilation fan but reusing exhausted heat. By the simulation, it is certain that the exhausted heat should be eliminated in air-conditioning time. 3) The use of exhausted heat source heat pump could save 8% of electric power per hour in comparison with existing heat pump. It was based on a present heat generation and traffic for ventilating time of general air-conditioning, but could be different by ventilating time. 4) As the traffic increases up to 1.5 or 2 times, electric power consumption of the conventional heat pump increases to 11% or 13.5% per mean hour in comparison with that of the exhausted heat source heat pump, though all-day ventilation.

  • PDF

Data Transmission Method using Broadcasting in Bluetooth Low Energy Environment (저전력 블루투스 환경에서 브로드캐스팅을 이용한 데이터전송 방법)

  • Jang, Rae-Young;Lee, Jae-Ung;Jung, Sung-Jae;Soh, Woo-Young
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.963-969
    • /
    • 2018
  • Wi-Fi and Bluetooth technologies are perhaps the most prominent examples of wireless communication technologies used in the Internet of Things (IoT) environment. Compared to widely used Wi-Fi, Bluetooth technology has some flaws including 1:1 connection (one-way) between Master and Slave, slow transmission, and limited connection range; Bluetooth is mainly used for connecting audio devices. Since the release of Bluetooth Low Energy (BLE), some of the flaws of Bluetooth technology have been improved but it still failed to become a competitive alternative of Wi-Fi. This paper presents a method of data transmission through broadcasting in BLE and demonstrates its performance, one-to-many data transfer result. The Connection-Free Data Transmission proposed in this paper will hopefully be utilized in special circumstances requiring 1:N data transmission or disaster security network.

Remediation of benzo[a]pyrene Contaminated Soil using Subcritical Water (아임계수를 이용한 토양 내 벤조[a]피렌 정화)

  • Shin, Moon-Su;Islam, Mohammad Nazrul;Jo, Young-Tae;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.13-17
    • /
    • 2014
  • Subcritical water acts like an organic solvent at elevated temperature in terms of its physicochemical properties. Taking into account this advantage, the remediation experiments of benzo[a]pyrene contaminated soil (8.45 mg/kg of initial concentration) were conducted using subcritical water extraction apparatus. The effect of operating factors on the removal efficiency was studied at the varying the conditions of the water temperature ranging $200{\sim}300^{\circ}C$, extraction time 30~90 min, and flow rate 0.3~2.0 mL/min. 12 g of benzo[a]pyrene contaminated soil was inserted into the extraction cell and placed into the reactor and then the subcritical water was driven through the cell. In this study, the removal efficiency of benzo[a]pyrene was increased from 55.1 to 98.1% when the temperature increased from 200 to $300^{\circ}C$. The removal efficiency was decreased from 97.0 to 77.0% when the flow rate increased from 0.3 to 2.0 mL/min, suggesting that the extraction is limited by intra-particle diffusion. The 30 min reaction time was determined as an effective treatment time at $250^{\circ}C$. Based on the results, the optimum condition for the remediation of benzo[a]pyrene contaminated soil was suggested to be $250^{\circ}C$, 30 min, and 0.3 mL/min.

A Study on Integrated Operation Strategies Between New & Renewable Energy Policy and Demand Side Management Policy (신재생에너지 정책과 수요관리 정책의 통합 운영 전략에 관한 연구)

  • Hwang, Sungwook;Jung, Hoon;Nah, Hwanseon;Won, Jongryul;Kim, Junghoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.144-144
    • /
    • 2010
  • Reasonable usage methods of energy resources, which are limited for human beings to use, consists of new & renewable energy (NRE) and demand side management (DSM). All technologies and policies for energy resources are classified into two fields, methods for using new energy resources and methods for using conventional fuel energy resources. Various development activities for these fileds have been implemented and various subsidy programs have been operated to penetrate into markets rapidly. These subsidy programs have various types of subsidy by energy resources and programs and the budget are funded by government, which is called Electric Power Industry Basis Fund and is managed considering technology level, economic analysis, global environment, etc. These subsidy programs are managed by Korea Energy Management Corporation (KEMCO) for NRE and by Korea Electric Power Corporation (KEPCO) for DSM, the management are different among two corporations because the purposes and features of establishment are different though these are all public organization. KEMCO is managing the NRE subsidy programs according to the government will, while the management of KEPCO subjects to power system operations though the government will for DSM is considered. NRE which is on the initial phase of diffusion would not affect on power system seriously but the affects could be grown when the diffusion and importance are expanded. Hence some integrated affection analyses considering NRE and DSM are required and this paper shows the concept of integrated operation strategies with ground source heat pump systems which are related with two fields simultaneously.

  • PDF