• Title/Summary/Keyword: Energy variation

Search Result 2,924, Processing Time 0.026 seconds

The Effects of Operational Factors On the Performance of Husk Separator (왕겨풍구의 성능(性能)에 영향(影響)을 미치는 작동요인(作動要因)에 관(關)한 연구(硏究))

  • Chang, Hyun Taik;Noh, Sang Ha;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 1984
  • Husk separator is an indispensable equipment in rice milling plants. However, any basic research on the designing and operating criteria of the husk separator have rarely been conducted in Korea. According to the survey results reported recently, grain loss occurs in the process of rice husk separation at custom rice milling plants in Korea and the performance of husk separator has also not been identified. With this regard this study was conducted with a typical commercial husk separator to investigate the effect of the operational factors such as feed rate, blower speed and opening ratio on the velocity distribution in the air duct and the performance of the separator. The results are summerized as follows: 1. The average wind velocity in the primary air duct increased linearly with the blower rpm and the size of air inlet port in both cases of double type and single type operations. 2. The coefficient of variation in the horizontal wind velocities in the primary air duct was the minimum when the opening ratio was 0.22 ($0.052m^2$ of air inlet port) in both cases of single type and double type operations regardless of the blower speeds used in this test. The average wind velocity at the upper part of air duct was greater by 2-5 m/s than the velocity at the bottom part in double type operation. In case of single type operation, however, the average velocity in the middle part was greater than the upper or bottom part when the opening ratio was greater than 0.74. 3. The relationship between the overall effectiveness of separation(Ed for double type and Es for single type) and the average wind velocity (Va) in the primary air duct was expressed in the following quadratic functions. $$Ed=-190.84+106.18Va-10.052Va^2$$ ($r^2$ = 0.97782) $$Es=-223.76+106.23Va-9.1935Va^2$$ ($r^2$ = 0.97029) The average wind velocity required to obtain the overall effectiveness of separation more than 80% ranged from 4.04 m/sec to 5.84 m/sec in case of double type operation, and from 4.70 m/sec to 6.20 m/sec in case of single type. 4. An optimum wind velocity can be obtained with an increase in the blower speed or the size of air inlet port as presented in Figure 8. There was a tendency that the faster the blower speed, the narrower the control range of the air inlet port. 5. The feed rates (1850kg/hr and 2100kg/hr) adopted in this experiment did not bring about a significant difference in both the overall effectiveness of separation and the power consumption. 6. The energy consumption increased cubically with the blower speed but linearly with the size of the air inlet port. On the basis of the results described in items 1, 3, and 6, it would be more economic to adjust the size of the air inlet port larger with a relatively low blower speed than to adjust the size smaller with a relatively high speed.

  • PDF

Effect of Temperature Shock on Cultured Olive Flounder (Paralichthys olivaceus) and Black Rockfish (Sebastes schlegeli)

  • Lee Sang Jun;Lee Jong Hee;Kang Jeong Ha;Lee Jeong Ho;Min Kwang Sik;Myung Jeong In;Kim Yoon;Kong In Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.3
    • /
    • pp.112-119
    • /
    • 2001
  • Aim of this research is to investigate the effect of temperature shocks on the physiological responses of cultured olive flounder (Paralichthys olivaceus) and black rockfish (Sebastes schlegeli). Olive flounder and black rockfish were suffered with high and low temperature shocks for 4 and 8h, respectively, in laboratory conditions and then the changes in glucose, lactate, total protein, uric acid, and triglycerides-glycerol in blood plasma were analyzed. We observed that lactate and uric acid increased for up to 4h and then decreased for up to 8h by the high and low temperature shocks, and total protein decreased for up to 4h and then recovered for up to 8h by the high temperature shock in both fishes. Glucose by the high and low temperature shocks and triglycerides-glycerol by the low temperature shock increased for up to 4h, and then decreased in olive flounder, but increased for up to 8h in black rockfish. From the result, we speculated that the two fishes have an interspecific variation in the regulatory systems of glucose and triglycerides-glycero1. Glucose would play important role as an energy source during the temperature shocks and for an intermediate substance for low temperature tolerance, and glycerol of triglycerides-glycerol would play an important role for low temperature tolerance. In olive flounder, the turnover of chemical change by temperature shock took more than 4h, all chemicals returned almost to the initial level for up to 8h, but fish death followed only in 8h with the high temperature shocked group within two days. Therefore, we suggested that fish would be damaged severely by the longer time exposure of high temperature and mortality would occur after a certain time later than the shocked time as a post-effect.

  • PDF

Analysis of Factors to Influence Requirements of Vitamins E and Vitamin C in Young and Healthy Men and Women (건강하고 젊은 남녀의 비타민 E와 비타민 C 요구량에 영향을 미치는 요인 분석)

  • 박선민
    • Journal of Nutrition and Health
    • /
    • v.31 no.4
    • /
    • pp.729-738
    • /
    • 1998
  • Antioxidants such as vitamin C and E may play a preventive role in the development of cancer and coronary heart disease. The status of vitamins C and E may be affected by lifestyle habits such as smoking , drinking, and exercise. These habits can modify the dietary requirements of vitamin C and vitamin E. the purpose of this study was to determine whether Korean young healthy men and women consume vitamins C and E in sufficient quantities relative to their lifestyle habits. Among the participants in this study, 52% of the men and none of the women were smokers. ; 84% of all subjects drank alcohol more than once a week ; and the men exercised more often than the women. The concentrations of serum total , HDL-, and LDL- cholesterol were higher in the women than in the men, but the serum triglyceride concentrations were higher in the men than in the women. The men consumed less satuated fat than the women (p<0.05) . The daily intakes of vitamin C for the men and the women were 47.1mg and 65.6mg, respectively. On the other hand , the daily vitamin E intake was higher in the men (11.8mg) than women(6.9mg). The serum $\alpha$-tocopherol concentrations of all subjects were in a normal range, and in no subjects were they below the minimum value of ranges. However, about 19% of male subjects and 10% of female subjects showed deficient status, although the mean serum vitamin C levels were normal . Lifestyle habits fo the sort mentioned above have little influence on the serum vitamin C and $\alpha$-tocopherol concentrations. The serum $\alpha$-tocopherol concentration had a positive correlation with total fat and alcohol consumption. The serum vitamin C concentration was positively associated with regular exercise, but it was negatively correlated with the number of cigarettes smoked. Meanwhile, the serum lipid persoxide concentration , the indirect index of oxidative stress, was influenced by certain variable such as body mass index , the number of cigarettes smoked , alcohol consumption, energy expenditure, vitamin C intake, and serum ${\gamma}$-tocopherol concentration. Serum lipid peroxide concentration was positively associated with body mass index, the number of cigarette smoked , serum triglyceride , and HDL-cholesterol concentration. In conclusion , the vitamin E requirements of the subjects were met by the Recommended Daily Allowance (RDA) regardless of lifestyle habits. However, serum vitamin C concentrations showed individual variation and was below the normal ranges. Smoking and exercise influenced serum vitamin C concentration. Therefore, a reevaluation of the requirements of vitamin C relative to lifestyle habits is necessary.

  • PDF

Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays

  • Jiang, Dehai;Jiang, Weimei;Liu, Hongnian;Sun, Jianning
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.275-289
    • /
    • 2008
  • Large eddy simulations have been performed within and over different types of urban building arrays. This paper adopted three dimensionless parameters, building frontal area density (${\lambda}_f$) the variation degree of building height (${\sigma}_h$), and the staggered degree of building range ($r_s$), to study the systematic influence of building spacing, height and layout on wind and turbulent characteristics. The following results have been achieved: (1) As ${\lambda}_f$ decrease from 0.25 to 0.18, the mean flow patterns transfer from "skimming" flow to "wake interference" flow, and as ${\lambda}_f$ decrease from 0.06 to 0.04, the mean flow patterns transfer from "wake interference" flow to "isolated roughness" flow. With increasing ${\lambda}_f$, wind velocity within arrays increases, and the vortexes in front of low buildings would break, even disappear, whereas the vortexes in front of tall buildings would strengthen and expand. Tall buildings have greater disturbance on wind than low buildings do. (2) All the wind velocity profiles and the upstream profile converge at the height of 2.5H approximately. The decay of wind velocity within the building canopy was in positive correlation with ${\lambda}_f$ and $r_s$. If the height of building arrays is variable, Macdonald's wind velocity model should be modified through introducing ${\sigma}_h$, because wind velocity decreases at the upper layers of the canopy and increases at the lower layers of the canopy. (3) The maximum of turbulence kinetic energy (TKE) always locates at 1.2 times as high as the buildings. TKE within the canopy decreases with increasing ${\lambda}_f$ and $r_s$ but the maximum of TKE are very close though ${\sigma}_h$ varies. (4) Wind velocity profile follows the logarithmic law approximately above the building canopy. The Zero-plane displacement $z_d$ heighten with increasing ${\lambda}_f$, whereas the maximum of and Roughness length $z_0$ occurs when ${\lambda}_f$ is about 0.14. $z_d$ and $z_0$ heighten linearly with ${\sigma}_h$ and $r_s$, If ${\sigma}_h$ is large enough, $z_d$ may become higher than the average height of buildings.

Performance estimation of conical picks with slim design by the linear cutting test (II): depending on skew angle variation (선형절삭시험에 의한 슬림 코니컬커터의 절삭성능 평가(II): Skew Angle 변화에 의한 결과)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Park, Young-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.585-597
    • /
    • 2014
  • In this study, the cutter acting forces were measured by 3-directional load cell at two different skew angles and various S/d ratios during a series of linear cutting tests using a slim conical pick. The analysis for cutting performance were carried out after calculating average values of the measured results. The increase of penetration depth results in the decrease of specific energy. And the variations of the cutter acting forces depending on penetration depth in the case of 6 degree skew angle were smaller than in the case of 0 degree skew angle. From this results, 6 degree skew angle is more effective than 0 degree skew angle in designing optimal specifications of cutting head. In addition, $F_c/F_n$ under the setting of 6 degree skew angle was smaller than under the setting of 0 degree skew angle. However, it should be considered that the increase of cutter acting force in the cutting direction accompanied the increase of driving force in the case of the setting for 6 degree skew angle.

A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor (공연비 변화가 MILD 연소 특성에 미치는 영향에 관한 해석적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Shim, Sung-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.587-592
    • /
    • 2010
  • A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the variation of air fuel ratio. For the smaller magnitude of air injection velocity(10 m/s), the air flow could not penetrate toward upper part of furnace. On the other hand, the air flow suppresses the fuel flow for the case of air injection velocity 30 m/s. The air velocity 18 m/s is corresponding to the stoichiometric air flow velocity, and for that case, the air flows to relatively more upper part of the furnace when compared with the case of air injection velocity 10 m/s. The reaction zone is produced with the previous flow pattern, so that the reaction zone of the air injection velocity 10 m/s is biased to the air nozzle side and for the case of air injection velocity 30 m/s, the reaction zone is inclined to the fuel nozzle side. For the cases with the air injection velocities 16, 18, 20 m/s, the reaction zone is nearly located at the center between air nozzle and fuel nozzle. The maximum temperatures and NOx concentrations for the cases of air injection velocity 16, 18, 20 m/s are lower than the cases with air injection velocity 10, 30 m/s. From the present study, the stoichiometric air fuel ratio is considered as the most optimal operating condition for the NOx reduction.

On the Period Change of the Contact Binary GW Cephei

  • Kim, Chun-Hwey;Song, Mi-Hwa;Yoon, Joh-Na;Jeong, Jang-Hae;Jeoung, Taek-Soo;Kim, Young-Jae;Kim, Jung-Yeb
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • BVR CCD observations of GW Cep were made on 15 nights in November through December 2008 with a 1-m reflector at the Jincheon station of the Chungbuk National University Observatory. Nineteen new times of minimum lights for GW Cep were determined and added to a collection of all other times of minima available to us. These data were then intensively analyzed, by reference to an O-C diagram, to deduce the general form of period variation for GW Cep. It was found that the O-C diagram could be interpreted as presenting two different forms of period change: an exclusively quasi-sinusoidal change with a period of 32.6 years and an eccentricity of 0.10; and a quasi-sinusoidal change with a period of 46.2 years and an eccentricity of 0.36 superposed on an upward parabola. Although a final conclusion is somewhat premature at present, the latter seems more plausible because late-type contact binaries allow an inter-exchange of both energy and mass between the component stars. The quasi-sinusoidal characteristics were interpreted in terms of a light-time effect due to an unseen tertiary component. The minimum masses of the tertiary component for both cases were calculated to be nearly the same as the $0.23-0.26M\;{\odot}$-ranges which is hardly detectable in a light curve synthesis. The upward parabolic O-C diagram corresponding to a secular period increase of about $4.12{\times}10^{-8}\;d/yr$ was interpreted as mass being transferred from the lesser to more massive component. The transfer rate for a conservative case was calculated to be about $2.66\;{\times}\;10^{-8}\;M_{\odot}/yr$ which is compatible with other W UMa-type contact binaries.

Variability of the PM10 Concentration in the Urban Atmosphere of Sabah and Its Responses to Diurnal and Weekly Changes of CO, NO2, SO2 and Ozone

  • Wui, Jackson CHANG Hian;Pien, CHEE Fuei;Kai, Steven KONG Soon;SENTIAN, Justin
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.109-126
    • /
    • 2018
  • This paper presents seasonal variation of $PM_{10}$ over five urban sites in Sabah, Malaysia for the period of January through December 2012. The variability of $PM_{10}$ along with the diurnal and weekly cycles of CO, $NO_2$, $SO_2$, and $O_3$ at Kota Kinabalu site were also discussed to investigate the possible sources for increased $PM_{10}$ concentration at the site. This work is crucial to understand the behaviour and possible sources of $PM_{10}$ in the urban atmosphere of Sabah region. In Malaysia, many air pollution studies in the past focused in west Peninsular, but very few local studies were dedicated for Sabah region. This work aims to fill the gap by presenting the descriptive statistics on the variability of $PM_{10}$ concentration in the urban atmosphere of Sabah. To further examine its diurnal and weekly cycle pattern, its responses towards the variations of CO, $NO_2$, $SO_2$, and ozone were also investigated. The highest mean value of $PM_{10}$ for the whole study period is seen from Tawau ($35.7{\pm}17.8{\mu}g\;m^{-3}$), while the lowest is from Keningau ($31.9{\pm}18.6{\mu}g\;m^{-3}$). The concentrations of $PM_{10}$ in all cities exhibited seasonal variations with the peak values occurred during the south-west monsoons. The $PM_{10}$ data consistently exhibited strong correlations with traffic related gaseous pollutants ($NO_2$, and CO), except for $SO_2$ and $O_3$. The analysis of diurnal cycles of $PM_{10}$ levels indicated that two peaks were associated during the morning and evening rush hours. The bimodal distribution of $PM_{10}$, CO, and $NO_2$ in the front and at the back of ozone peak is a representation of urban air pollution pattern. In the weekly cycle, higher $PM_{10}$, CO, and $NO_2$ concentrations were observed during the weekday when compared to weekend. The characteristics of $NO_2$ concentration rationed to CO and $SO_2$ suggests that mobile sources is the dominant factor for the air pollution in Kota Kinabalu; particularly during weekdays.

A Study on Application of SBR Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR 공정 적용에 관한 연구)

  • Kim, Il-Whee;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • In this study, Application of sequencing batch reactor (SBR) process for RO retentate treatment was performed. Efficiency of treatment by load and temperature variation was tested. The SBR process was operated two types as HRT per one cycle was 8 and 12 hours, respectively. Methanol was injected for an effective denitrificaion owing to low C/N ratio of the RO retentate. TN removal efficiency of the SBR process was relatively stable at the change of flow-rate and temperature. The optimum time cycle of SBR process was 2 cycle/day for TN removal, and in the case of 3 cycle/day, the effluent TN concentration was found under the effluent quality standard. In the result of assessment, the application of SBR process for RO retentate treatment was effective and could be utilized to design for the wastewater treatment plant. The specific nitrification rate (SNR) and specific denitrification rate (SDNR) were $0.043{\sim}0.066kg\;NH_3-N/kg\;MLVSS{\cdot}day$ and $0.096{\sim}0.287kg\;NH_3^--N/kg\;MLVSS{\cdot}day$, respectively. The derived kinetic could be applied for design to the aerobic and anoxic tank in the RO retentate treatment.

Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite Using TGA (열중량 분석기를 이용한 목재펠릿 및 국내무연탄의 연소 특성 조사)

  • Kim, Dong-Won;Lee, Jong-Min;Kim, Jae-Sung;Seon, Pyeong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.58-67
    • /
    • 2010
  • Combustion of the Korean Anthracite and wood-pellet was characterized in air atmosphere with variation of heating rate(5, 10, 20 and $30^{\circ}C/min$) in TGA. The results of TGA have shown that the combustion of the wood-pellet occurred in the temperature range of $200{\sim}620^{\circ}C$ which is much lower than that of Korean anthracite. Activation energies of the wood-pellet and Korean anthracite, determined by using Friedman method were 44.12, 21.45 kcal/mol respectively. Also, their reaction orders(n) and pre-exponential factors(A) were 5.153, 0.7453 and $4.01{\times}10^{16}$, $1.39{\times}10^6(s^{-1})$ respectively. In order to find out the combustion mechanism of the wood-pellet and Korean anthracite, twelve solidstate mechanisms defined by Coats Redfern Method were tested. The solid state combustion mechanisms of the woodpellet and Korean anthracite were found to be sigmoidal curve A3 type and a deceleration curve F1 type respectively. Also, from iso-thermal combustion($300{\sim}900^{\circ}C$) of their char, the combustion characteristics of their char was found. Activation energies of the their char were 27.5, 51.2 kcal/mol respectively. Also, pre-exponential factors(A) were $2.55{\times}10^{12}$, $1.49{\times}10^{10}(s^{-1})$ respectively. Due to the high combustion reactivity of wood-pellet compared with Korean anthracite, combustion atmosphere will be improved by co-combustion with Korean anthracite and wood-pellet.