• 제목/요약/키워드: Energy transition

검색결과 1,581건 처리시간 0.025초

전이금속 카바이드를 이용한 암모니아 분해 반응으로부터 수소생산 (Hydrogen Production from Ammonia Decomposition over Transition Metal Carbides)

  • 최의지;최정길
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2019
  • The preparation and catalytic activities of various transition metal carbide crystallites (VC, MoC, WC) were examined in this study. In particular, the effect of different kinds of transition metal crystallites were scrutinized on the ammonia decomposition reaction. The experimental results showed that BET surface areas ranged from $8.3m^2/g$ to $36.3m^2/g$ and oxygen uptake values varied from $9.1{\mu}mol/g$ to $25.4{\mu}mol/g$. Amongst prepared transition metal carbide crystallites, tungsten compounds (WC) were observed to be most active for ammonia decomposition reaction. The main reason for these results were considered to be related to the extent of electronegativity between these materials. Most of transition metal carbide crystallites were exceeded by Pt/C crystallite. However, the steady state reactivities for some of transition metal carbide crystallites (WC) were comparable to or even higher than that determined for the Pt/C crystallite.

0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성 (Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System)

  • 류호정;김정환;황병욱;남형석;이도연;조성호;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.

Collaboration and Confucian Reflexivity in Local Energy Governance: The Case of Seoul's One Less Nuclear Power Plant Initiatives

  • Lee, Youhyun;Bae, Suho
    • Journal of Contemporary Eastern Asia
    • /
    • 제18권1호
    • /
    • pp.153-174
    • /
    • 2019
  • South Korea's energy policy has been historically established through an energy production structure that relies on thermal and nuclear power generation in relation to a centralized 'Hard Energy System'. However, climate change issues are forcing the transition to renewable energy, and it is crucial for local governments to enable this. This study analyses Seoul city's local energy governance, which is known as One Less Nuclear Power Plant Initiative, by applying the collaborative governance framework inspired by Ansell and Gash (2008) and the Reflexivity framework of Confucianism. It is considered that the local energy governance model of Seoul city can be used as a model by other local governments, and it will eventually lead to a decentralized energy system in this era of energy transition.

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

  • PARK HYUN;LEE KI-SEOG;PARK SEON-MI;LEE KWANG-WON;KIM AUGUSTINE YONGHWI;CHI YOUNG-MIN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.587-594
    • /
    • 2005
  • The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.

MgHx-Sc2O3 복합재료의 수소화 특성 (Hydrogenation Properties on MgHx-Sc2O3 Composites by Mechanical Alloying)

  • 김경일;김용성;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.81-88
    • /
    • 2010
  • Hydrogen energy applications have recognized clean materials and high energy carrier. Accordingly, Hydrogen energy applies for fuel cell by Mg and Mg-based materials. Mg and Mg-based materials are lightweight and low cost materials with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. Therefore one of the most methods to improve kinetics focused on addition transition metal oxide. Addition to transition metal oxide in $MgH_x$ powder produce $MgH_x$-metal oxide composition by mechanical alloy and it analyze XRD, EDS, TG/DSC, SEM, and PCT. This report considers kinetics by transition metal oxide rate and Hydrogen pressure. In this research, we can see behavior of hydriding/dehydriding profiles by addition catalyst (transition metal oxide). Results of PCI make a excellent showing $MgH_x$-5wt.% Sc2O3 at 623K, $MgH_x$-10wt.% $Sc_2O_3$ at 573K.

Structure Optimization of Solute Molecules via Free Energy Gradient Method

  • Nagaoka, Masataka
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.805-808
    • /
    • 2003
  • Fundamental ideas of the free energy gradient method are briefly reviewed with three applications: the stable structures of glycine and ammonia-water molecule pair in aqueous solution and the transition state (TS) structure of a Menshutkin reaction $NH_3 + CH_3Cl → CH_3NH_3^+ + Cl^-$ in aqueous solution, which is the first example of full TS optimization of all internal degrees of freedom.

PZT 요업체에서 입자 크기가 상전이에 미치는 영향 (Grain size effects on the dielectric phase transition in PZT ceramics)

  • 정훈택;김호기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1989년도 춘계학술대회 논문집
    • /
    • pp.107-109
    • /
    • 1989
  • Based on the ferroelectric microstructural residual stress model, the relation between grain size and residual elastic energy was proposed. It was found that the residual elastic energy increased with decreasing grain size by modeling and DSC results. This residual elastic energy change with grain size which induce the phase transituion mode change was the cause of a diffuse phase transition in small grain size.

  • PDF

심층학습을 이용한 전이대 두께 예측 (Thickness Estimation of Transition Layer using Deep Learning)

  • 장성형;이동훈;김병엽
    • 지구물리와물리탐사
    • /
    • 제26권4호
    • /
    • pp.199-210
    • /
    • 2023
  • CO2 주입 후 저류층은 암석물리 특성이 변하므로 이 연구에서는 저류층을 물성이 선형으로 변하는 전이대 지층모델로 구성한다. 울프 반사계수 함수는 전이대 상하지층의 속도비, 주파수, 전이대 두께 함수로 구성되어 있어 저류층 두께나 해저면 전이대 두께를 추정하는데 활용할 수 있다. 이 연구에서는 심층학습을 이용하여 전이대 두께를 예측 방법을 제안한다. 심층학습을 적용하기 위해 사암 저류층, 셰일 덮개암으로 구성한 인공 전이대 지층모델에 두께에 따른 울프 반사계수 모델링을 수행하고 시간-스펙트럼 영상자료를 확보하였다. 두께별 시간-주파수 스펙트럼 영상과 중합단면도 트레이스에서 구한 시간-주파수 스펙트럼 비교로부터 구한 두께 추정결과는 항상 정확하게 전이대의 두께를 제시하지는 못하였다. 그러나 다양한 환경에서 학습자료를 확보하고 정확도를 높이면 현장자료적용이 가능할 것으로 본다.

Rovibrational Energy Transitions and Coupled Chemical Reaction Modeling of H+H2 and He+H2 in DSMC

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.347-359
    • /
    • 2015
  • A method of describing the rovibrational energy transitions and coupled chemical reactions in the direct simulation Monte Carlo (DSMC) calculations is constructed for $H(^2S)+H_2(X^1{\Sigma}_g)$ and $He(^1S)+H_2(X^1{\Sigma}_g)$. First, the state-specific total cross sections for each rovibrational states are proposed to describe the state-resolved elastic collisions. The state-resolved method is constructed to describe the rotational-vibrational-translational (RVT) energy transitions and coupled chemical reactions by these state-specific total cross sections and the rovibrational state-to-state transition cross sections of bound-bound and bound-free transitions. The RVT energy transitions and coupled chemical reactions are calculated by the state-resolved method in various heat bath conditions without relying on a macroscopic properties and phenomenological models of the DSMC. In nonequilibrium heat bath calculations, the state-resolved method are validated with those of the master equation calculations and the existing shock-tube experimental data. In bound-free transitions, the parameters of the existing chemical reaction models of the DSMC are proposed through the calibrations in the thermochemical nonequilibrium conditions. When the bound-free transition component of the state-resolved method is replaced by the existing chemical reaction models, the same agreement can be obtained except total collision energy model.